HAN Yinghao,YANG Yongfang,DU Ping,et al.Global attractor for a class of stochastic strongly damped wave equations[J].Journal of Yanbian University,2016,42(03):181-187.
一类随机强衰减波动方程的整体吸引子
- Title:
- Global attractor for a class of stochastic strongly damped wave equations
- 分类号:
- O211.63; O175.29
- 文献标志码:
- A
- 摘要:
- 在有界区域上研究了具有Neumann边界条件的随机强衰减波动方程的渐近行为.针对与上述波动方程相关联的随机动力系统,在一个余维数1的空间上证明其随机吸引子的存在性.研究了此动力系统紧吸引集的存在性,并分析了紧吸引集的调和性,从而得到了随机吸引子的唯一存在性.
- Abstract:
- On a bounded domain we investigate the asymptotic behaviour of the strongly damped stochastic wave equation with the Neumann boundary condition. We prove the existence of the global attractor for the random dynamical system associated with the above equation in a co-dimension one space. And then, the random dynamic system associated with the above equation has a compact attracting set is studyed, and the compact attracting set is tempered is investigated. Hence we get the existence of the global attractor of the random dynamical system.
参考文献/References:
[1] Chen G, Russell D L. A mathematical model for linear elastic systems with structural damping[J]. Quarterly of Applied Mathematics, 1980,39(4):433-454.
[2] 韩英豪,程锦辉,刘拓,等.分形布朗运动驱动的随机偏微分泛函方程的渐近行为[J].辽宁师范大学学报(自然科学版),2015,38(4):452-459.
[3] Zhou S. Dimension of the global attractor for strongly damped nonlinear wave equations[J]. J Math Anal Appl, 1999,233(1):102-115.
[4] Wang Z, Zhou S, Gu A. Random attractor of the stochastic strongly damped wave equation[J]. Comm in Nonl Sci & Num, 2012,17(4):1649-1658.
[5] Chueshov I. Monotone random systems theory and applications[M]. New York: Springer-Verlag, 2002.
[6] Bates P, Lui K, Wang B. Random attractors for stochastic reaction-diffusion equations on unbounded domains[J]. J Diff Equ, 2009,246(2):845-869.
[7] Temam R. Infinite dimensional dynamical systems in mechanics and physics[M]. New York: Springer-Verlag, 1998.
备注/Memo
收稿日期: 2016-06-27作者简介: 韩英豪(1963—),男,理学博士,副教授,研究方向为无穷维动力系统.