[1]刘裕丰,许成哲*.基于TV-L2模型的人脸识别光照正规化算法[J].延边大学学报(自然科学版),2016,42(01):60-64.
 LIU Yufeng,XU Chengzhe*.Research of illumination normalization algorithm for face recognition based on TV-L2 model[J].Journal of Yanbian University,2016,42(01):60-64.
点击复制

基于TV-L2模型的人脸识别光照正规化算法

参考文献/References:

[1] Zou X, Kittler J, Messer K. Illumination invariant face recognition: a survey[C]//First International Conference on BTAS. IEEE, 2007:1-8.
[2] Makwana R M. Illumination invariant face recognition: a survey of passive methods[J]. Procedia Computer Science, 2010,2:101-110.
[3] Chen T, Yin W, Zhou X S, et al. Total variation models for variable lighting face recognition[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2006,28(9):1519-1524.
[4] Park Y K, Park S L, Kim J K. Retinex method based on adaptive smoothing for illumination invariant face recognition[J]. Signal Processing, 2008,88(8):1929-1945.
[5] Xu C, Kim I. Simplified adaptive smoothing filter for face recognition[C]//Fourth International Joint Conference on Computational Sciences and Optimization. IEEE, 2011:341-344.
[6] Vishwakarma V P. Illumination normalization using fuzzy filter in DCT domain for face recognition[J]. International Journal of Machine Learning and Cybernetics, 2013,6(1):17-34.
[7] Xu C. Illumination invariant face recognition using nonlocal total variation in logarithmic domain[C]//International Conference on Measurement, Instrumentation and Automation. TTP, 2012:1652-1658.
[8] Rudin L I, Osher S, Fatemi E. Nonlinear total variation based noise removal algorithms[J]. Physica D: Nonlinear Phenomena, 1992,60(1):259-268.
[9] Georghiades A S, Belhumeur P N, Kriegman D J. From few to many: illumination cone models for face recognition under variable lighting and pose[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2001,23(6):643-660.

备注/Memo

收稿日期: 2016-01-24 基金项目: 延边大学青年基金资助项目(延大科合字[2015]第14号) *通信作者: 许成哲(1975—),男,博士,副教授,研究方向为信号处理、图像处理及模式识别.

更新日期/Last Update: 2016-01-20