LIU Yueting,ZHANG Yan.Application of CMSFLA-SVM algorithm in face recognition[J].Journal of Yanbian University,2015,41(04):337-342.
CMSFLA-SVM算法在人脸识别中的应用
- Title:
- Application of CMSFLA-SVM algorithm in face recognition
- 文章编号:
- 1004-4353(2015)04-0337-06
- Keywords:
- support vectors machines(SVM); shuffled frog leaping algorithm(SFLA); crossover; mutation; face recognition; optimal solution
- 分类号:
- TP391
- 文献标志码:
- A
- 摘要:
- 针对蛙跳算法(shuffled frog leaping algorithm,SFLA)易陷入局部最优,且求解精度较低的问题,提出一种交叉变异的蛙跳算法(crossover and mutation shuffled frog leaping algorithm,CMSFLA).该算法在全局搜索中,青蛙个体依适应度值而选择不同概率分别进行交叉和变异操作.将改进的蛙跳算法CMSFLA训练支持向量机(support vectors machines,SVM),并将其用于人脸识别中.ORL和CAS-PEAL-R
- Abstract:
- Because of shuffled frog leaping algorithm(SFLA)such as local optimal and low precision solution,a crossover and mutation shuffled frog leaping algorithm is presented. In the global search, each of frog individuals according to the fitness will choose different probability of crossover and mutation operations. A face recognition algorithm using CMSFLA to train SVM is proposed. The simulation results of experiments on the ORL and CAS-PEAL-R1 face database show that compared with ASFLA-SVM and KSFLA-SVM, CMSFLA-SVM has higher recognition rate and higher speed. In the lack of training samples, CMSFLA-SVM also has good recognition effect.
参考文献/References:
[1] ZHAO W, Chellappa R, Philips P J, et al. Face recognition: a literature survey[J]. ACM Computing Surveys, 2003,35(4):399-458.
[2] 聂会星,梁坤,徐枞巍.基于小波变换和支持向量机的人脸识别研究[J].合肥工业大学学报(自然科学版),2011,34(2):208-211.
[3] 汪世义,陶亮,王华彬.支持向量机和遗传算法的人脸识别方法[J].计算机工程与应用,2009,45(12):164-166.
[4] Tang Faming, Chen Mianyun, Wang Zhongdong. An improved approach to training support vectors machine[J]. Journal of Systems Engineering and Electronics, 2006,17(1):200-205.
[5] 张潇丹,黄程韦,赵力,等.应用改进混合蛙跳算法的实用语音情感识别[J].声学学报,2014,51(2):271-280.
[6] 谢赛琴,沈福明,邱雪娜.基于支持向量机的人脸识别方法[J].计算机工程,2009,35(16):186-188.
[7] Eusuff M M, Lansey K E. Optimization of water distribution network design using the shuffled frog leaping algorithm[J]. Journal of Water Sources Planning and Management, 2003,129(3):210-225.
[8] Elbeltagi E, Hegazy T, Grierson D. A modified shuffled frog-leaping optimization algorithm: application to project management[J]. Structure and Infrastructure Engineering, 2007,3(1):53-60.
[9] 姜建国,张丽媛,苏仟.一种利用动态搜索策略的混合的蛙跳算法[J].西安电子科技大学学报(自然科学版),2014,41(4):66-71.
[10] 葛宇,王学平,梁静.自适应混沌变异蛙跳算法[J].计算机应用研究,2011,28(3):945-947.
[11] 李辉.交叉变异蛙跳算法[J].鲁东大学学报(自然科学版),2015,31(1):16-20.
[12] Elbeltagi E, Hegazy T, Grierson D. Comparison among five evolutionary-based optimization algorithms[J]. Advanced Engineering Informatics, 2005,19(1):43-53.
[13] 田海军.基于支持向量机的人脸识别技术研究与实现[D].长沙:国防科学技术大学,2009.
相似文献/References:
[1]刘悦婷.基于近邻密度改进的SVM不平衡数据集分类算法[J].延边大学学报(自然科学版),2018,44(01):43.
LIU Yueting.Imbalanced dataset classification algorithm based on NDSVM[J].Journal of Yanbian University,2018,44(04):43.
备注/Memo
基金项目: 甘肃省高等学校科研项目(2015B-132)
作者简介: 刘悦婷(1979—),女,副教授,研究方向为电子、自动控制.