[1]张凤芹,朱爱东.在无消相干子空间中确定性地实现多目标量子比特相位翻转门[J].延边大学学报(自然科学版),2015,41(04):300-306.
 ZHANG Fengqin,ZHU Aidong.Deterministic implementation of a controlled phase gate with multi-target qubits in decoherence-free subspace[J].Journal of Yanbian University,2015,41(04):300-306.
点击复制

在无消相干子空间中确定性地实现多目标量子比特相位翻转门

参考文献/References:

[1] Grover L K. Quantum mechanics helps in searching for a needle in a haystack[J]. Phys Rev Lett, 1997,79:325.
[2] Turchette Q A, Hood C J, Lange W, et al. Measurement of conditional phase shifts for quantum logic[J]. Phys Rev Lett, 1995,75:4710.
[3] Zou X B, Xiao Y F, Li S B, et al. Quantum phase gate through a dispersive atom-field interaction[J]. Phys Rev A, 2007,75:064301.
[4] Zou X B, Zhang S L, Li K, et al. Linear optical implementation of the two-qubit controlled phase gate with conventional photon detectors[J]. Phys Rev A, 2007,75:034302.
[5] Cirac J I, Zoller P. Quantum computations with cold trapped ions[J]. Phys Rev Lett, 1995,74:4091.
[6] Barenco A, Bennett C H, Cleve R, et al. Elementary gates for quantum computation[J]. Phys Rev A, 1995,52:3457.
[7] Chow1 J M, Gambetta J M, Cross A W, et al. Microwave-activated conditional-phase gate for superconducting qubits[J]. New J Phys, 2013,15:115012.
[8] Doherty A C, Wardrop M P. Two-qubit gates for resonant exchange qubits[J]. Phys Rev Lett, 2013,111:050503.
[9] Milburn G J. Quantum optical fredkin gate[J]. Phys Rev Lett, 1989,62:2124.
[10] Yang C P, Han S. N-qubit-controlled phase gate with superconducting quantum-interference devices coupled to a resonator[J]. Phys Rev A, 2005,72:032311.
[11] Yang C P, Su Q P, Zhang F Y, et al. Single-step implementation of a multiple-target-qubit controlled phase gate without need of classical pulses[J]. Opt Lett, 2014,39:003312.
[12] Chen C Y, Feng M, Gao K L. Toffoli gate originating from a single resonant interaction with cavity QED[J]. Phys Rev A, 2006,73:064304.
[13] Deng Z J, Zhang X L, Wei H, et al. Implementation of a nonlocal n -qubit conditional phase gate by single-photon interference[J]. Phys Rev A, 2007,76:044305.
[14] Deng Z J, Feng M, Gao K L. Preparation of entangled states of four remote atomic qubits in decoherence-free subspace[J]. Phys Rev A, 2007,75:024302.
[15] Lidar D A, Chuang I L, Whaley K B. Decoherence-free subspaces for quantum computation[J]. Phys Rev Lett, 1998,81:2594.
[16] Beige A, Braun D, Tregenna B, et al. Quantum computing using dissipation to remain in a decoherence-free subspace[J]. Phys Rev Lett, 2000,85:1762.
[17] Kempe J, Bacon D, Lidar D A, et al. Theory of decoherence-free fault-tolerant universal quantum computation[J]. Phys Rev A, 2001,63:042307.
[18] Lidar D A, Bacon D, Kempe J, et al. Decoherence-free subspaces for multiple-qubit errors. II. Universal, fault-tolerant quantum computation[J]. Phys Rev A, 2001,63:022307.
[19] Feng M. Grover search with pairs of trapped ions[J]. Phys Rev A, 2001,63:052308.
[20] Mohseni M, Lundeen J S, Resch K J, et al. Experimental application of decoherence-free subspaces in an optical quantum-computing algorithm[J]. Phys Rev Lett, 2003,91:187903.
[21] Duan L M, Kimble H J. Scalable photonic quantum computation through cavity-assisted interactions[J]. Phys Rev Lett, 2004,92:127902.
[22] Wei H, Yang W L, Deng Z J, et al. Many-qubit network employing cavity QED in adecoherence-free subspace[J]. Phys Rev A, 2008,78:014304.
[23] Hu Y M, Chen Q, Feng M. Grover search in decoherence-free subspace with low-Q cavities[J]. J Phys B: At Mol Opt Phys, 2011,44:175504.
[24] Wei H, Deng Z J, Zhang X L, et al. Ransfer and teleportation of quantum states encoded in decoherence-free subspace[J]. Phys Rev A, 2007,76:054304.
[25] Liu A P, Cheng L Y, Chen L, et al. Quantum information processing in decoherence-free subspace with nitrogen-vacancy centers coupled to a whispering-gallery mode microresonator[J]. Opt Commun, 2013,313:180.
[26] Duan L M, Guo G C. Preserving coherence in quantum computation by pairing quantum bits[J]. Phys Rev Lett, 1997,79:1953.
[27] Kielpinski D, Monroe C, Wineland D J. Architecture for a large-scale ion-trap quantum computer[J]. Nature, 2002,417:709.
[28] Chen Q, Feng M. Quantum-information processing in decoherence-free subspace with low-Q cavities[J]. Phys Rev A, 2010,82:052329.
[29] Wang C, Wang T J, Zhang Y, et al. Concentration of entangled nitrogen-vacancy centers in decoherence free subspace[J]. Opt Express, 2014,22:1551.
[30] An J H, Feng M, Oh C H. Quantum-information processing with a single photon by an input-output process with respect to low-Q cavities[J]. Phys Rev A, 2009,79:032303.
[31] Garnier A A, Simon C, Gérard J M, et al. Giant optical nonlinearity induced by a single two-level system interacting with a cavity in the Purcell regime[J]. Phys Rev A, 2007,75:053823.
[32] Duan L M, Kimble H J. Scalable photonic quantum computation through cavity-assisted interactions[J]. Phys Rev Lett, 2004,92:127902.
[33] Lin X M, Xue P, Chen M Y, et al. Scalable preparation of multiple-particle entangled states via the cavity input-output process[J]. Phys Rev A, 2006,74:052339.
[34] McKeever J, Buck J R, Boozer A D, et al. State-insensitive cooling and trapping of single atoms in an optical cavity[J]. Phys Rev Lett, 2003,90:133602.
[35] McKeever J, Boca A, Boozer A D, et al. Experimental realization of a one-atom laser in the regime of strong coupling[J]. Nature, 2003,425:268.
[36] Boca A, Miller R, Birnbaum K M, et al. Observation of the vacuum rabi spectrum for one trapped atom[J]. Phys Rev Lett, 2004,93:233603.

备注/Memo

基金项目: 国家自然科学基金资助项目(11564041,61465013,11264042)
通信作者: 朱爱东(1968—),女,博士,教授,研究方向为量子光学和量子信息学.

更新日期/Last Update: 2015-12-20