ZHANG Fengqin,ZHU Aidong.Deterministic implementation of a controlled phase gate with multi-target qubits in decoherence-free subspace[J].Journal of Yanbian University,2015,41(04):300-306.
在无消相干子空间中确定性地实现多目标量子比特相位翻转门
- Title:
- Deterministic implementation of a controlled phase gate with multi-target qubits in decoherence-free subspace
- 文章编号:
- 1004-4353(2015)04-0300-07
- 关键词:
- 无消相干子空间; 原子与光子的相互作用; 多量子比特相位门
- 分类号:
- O431
- 文献标志码:
- A
- 摘要:
- 基于腔的输入输出过程,在无消相干子空间中利用腔中束缚的2个原子编码成逻辑量子比特来确定性的实现多目标逻辑量子比特受控相位门.该方案不仅对抵御整体退相位错误是鲁棒的,而且容易实现.通过对相位门保真度的分析得知,该方案对腔衰减更加鲁棒,在中度耦合条件下,它的保真度可以达到1.最后,本文讨论了在当前实验条件下该方案的可行性.
- Abstract:
- A scheme is proposed for deterministically implementing a controlled-phase flip gate with multi-target logic qubits via the input-output process of the cavity, in which two atoms are trapped and encoded as one logic qubit in the decoherence-free subspace. The scheme is not only robust against the collective dephasing errors, but also easy to implement. The analysis of fidelity for this gate shows the robustness to cavity decay. Under a medium coupling strength it reaches a high fidelity near unity. The discussion on experiment shows its feasibility with current technology.
参考文献/References:
[1] Grover L K. Quantum mechanics helps in searching for a needle in a haystack[J]. Phys Rev Lett, 1997,79:325.
[2] Turchette Q A, Hood C J, Lange W, et al. Measurement of conditional phase shifts for quantum logic[J]. Phys Rev Lett, 1995,75:4710.
[3] Zou X B, Xiao Y F, Li S B, et al. Quantum phase gate through a dispersive atom-field interaction[J]. Phys Rev A, 2007,75:064301.
[4] Zou X B, Zhang S L, Li K, et al. Linear optical implementation of the two-qubit controlled phase gate with conventional photon detectors[J]. Phys Rev A, 2007,75:034302.
[5] Cirac J I, Zoller P. Quantum computations with cold trapped ions[J]. Phys Rev Lett, 1995,74:4091.
[6] Barenco A, Bennett C H, Cleve R, et al. Elementary gates for quantum computation[J]. Phys Rev A, 1995,52:3457.
[7] Chow1 J M, Gambetta J M, Cross A W, et al. Microwave-activated conditional-phase gate for superconducting qubits[J]. New J Phys, 2013,15:115012.
[8] Doherty A C, Wardrop M P. Two-qubit gates for resonant exchange qubits[J]. Phys Rev Lett, 2013,111:050503.
[9] Milburn G J. Quantum optical fredkin gate[J]. Phys Rev Lett, 1989,62:2124.
[10] Yang C P, Han S. N-qubit-controlled phase gate with superconducting quantum-interference devices coupled to a resonator[J]. Phys Rev A, 2005,72:032311.
[11] Yang C P, Su Q P, Zhang F Y, et al. Single-step implementation of a multiple-target-qubit controlled phase gate without need of classical pulses[J]. Opt Lett, 2014,39:003312.
[12] Chen C Y, Feng M, Gao K L. Toffoli gate originating from a single resonant interaction with cavity QED[J]. Phys Rev A, 2006,73:064304.
[13] Deng Z J, Zhang X L, Wei H, et al. Implementation of a nonlocal n -qubit conditional phase gate by single-photon interference[J]. Phys Rev A, 2007,76:044305.
[14] Deng Z J, Feng M, Gao K L. Preparation of entangled states of four remote atomic qubits in decoherence-free subspace[J]. Phys Rev A, 2007,75:024302.
[15] Lidar D A, Chuang I L, Whaley K B. Decoherence-free subspaces for quantum computation[J]. Phys Rev Lett, 1998,81:2594.
[16] Beige A, Braun D, Tregenna B, et al. Quantum computing using dissipation to remain in a decoherence-free subspace[J]. Phys Rev Lett, 2000,85:1762.
[17] Kempe J, Bacon D, Lidar D A, et al. Theory of decoherence-free fault-tolerant universal quantum computation[J]. Phys Rev A, 2001,63:042307.
[18] Lidar D A, Bacon D, Kempe J, et al. Decoherence-free subspaces for multiple-qubit errors. II. Universal, fault-tolerant quantum computation[J]. Phys Rev A, 2001,63:022307.
[19] Feng M. Grover search with pairs of trapped ions[J]. Phys Rev A, 2001,63:052308.
[20] Mohseni M, Lundeen J S, Resch K J, et al. Experimental application of decoherence-free subspaces in an optical quantum-computing algorithm[J]. Phys Rev Lett, 2003,91:187903.
[21] Duan L M, Kimble H J. Scalable photonic quantum computation through cavity-assisted interactions[J]. Phys Rev Lett, 2004,92:127902.
[22] Wei H, Yang W L, Deng Z J, et al. Many-qubit network employing cavity QED in adecoherence-free subspace[J]. Phys Rev A, 2008,78:014304.
[23] Hu Y M, Chen Q, Feng M. Grover search in decoherence-free subspace with low-Q cavities[J]. J Phys B: At Mol Opt Phys, 2011,44:175504.
[24] Wei H, Deng Z J, Zhang X L, et al. Ransfer and teleportation of quantum states encoded in decoherence-free subspace[J]. Phys Rev A, 2007,76:054304.
[25] Liu A P, Cheng L Y, Chen L, et al. Quantum information processing in decoherence-free subspace with nitrogen-vacancy centers coupled to a whispering-gallery mode microresonator[J]. Opt Commun, 2013,313:180.
[26] Duan L M, Guo G C. Preserving coherence in quantum computation by pairing quantum bits[J]. Phys Rev Lett, 1997,79:1953.
[27] Kielpinski D, Monroe C, Wineland D J. Architecture for a large-scale ion-trap quantum computer[J]. Nature, 2002,417:709.
[28] Chen Q, Feng M. Quantum-information processing in decoherence-free subspace with low-Q cavities[J]. Phys Rev A, 2010,82:052329.
[29] Wang C, Wang T J, Zhang Y, et al. Concentration of entangled nitrogen-vacancy centers in decoherence free subspace[J]. Opt Express, 2014,22:1551.
[30] An J H, Feng M, Oh C H. Quantum-information processing with a single photon by an input-output process with respect to low-Q cavities[J]. Phys Rev A, 2009,79:032303.
[31] Garnier A A, Simon C, Gérard J M, et al. Giant optical nonlinearity induced by a single two-level system interacting with a cavity in the Purcell regime[J]. Phys Rev A, 2007,75:053823.
[32] Duan L M, Kimble H J. Scalable photonic quantum computation through cavity-assisted interactions[J]. Phys Rev Lett, 2004,92:127902.
[33] Lin X M, Xue P, Chen M Y, et al. Scalable preparation of multiple-particle entangled states via the cavity input-output process[J]. Phys Rev A, 2006,74:052339.
[34] McKeever J, Buck J R, Boozer A D, et al. State-insensitive cooling and trapping of single atoms in an optical cavity[J]. Phys Rev Lett, 2003,90:133602.
[35] McKeever J, Boca A, Boozer A D, et al. Experimental realization of a one-atom laser in the regime of strong coupling[J]. Nature, 2003,425:268.
[36] Boca A, Miller R, Birnbaum K M, et al. Observation of the vacuum rabi spectrum for one trapped atom[J]. Phys Rev Lett, 2004,93:233603.
备注/Memo
基金项目: 国家自然科学基金资助项目(11564041,61465013,11264042)
通信作者: 朱爱东(1968—),女,博士,教授,研究方向为量子光学和量子信息学.