[1]许达允,全哲勇,朴东哲*.在黎曼流形上α -型(π,ω)半对称非度量联络的常曲率条件[J].延边大学学报(自然科学版),2015,41(04):275-278.
 HO Talyun,JEN Cholyong,PIAO Dongzhe*.A constant curvature condition of α -type (π,ω) semi-symmetric non-metric connection in a Riemannian manifold[J].Journal of Yanbian University,2015,41(04):275-278.
点击复制

在黎曼流形上α -(π,ω)半对称非度量联络的常曲率条件

参考文献/References:

[1] Fridman A, Schouten J A. Uber die geometric der halb-symmerschen uber tragungen[J]. Math Zeitschrift, 1924,21:211-233.
[2] Indranu Suhendro. A new semi-symmetric unified field theory of the classical fields of gravity and electromagnetism[J]. Progress in Physics, 2007,4:47-62.
[3] Hayden H A. Subspaces of a space with torsion[J]. Proc of London Math Soc, 1932,34:27-50.
[4] Muniraja G. Manifolds admitting a semi-symmetric metric connection and ageneralization of Schur’s theorem[J]. Int J Contemp Math Sci, 2008,3(25/28):1223-1232.
[5] Hong Van Le. Statistical manifolds are statistical models[J]. J Geom, 2005,24:83-93.
[6] Zhao P B. Some properties of projective semi-symmetric connections[J]. International Mathematical Forum, 2008,3(7):341-347.
[7] Dunn K A. A geometric model for scalar-tensor theories of gravitation tensor[J]. N S, 1775,29:214-216.
[8] Han Yanling, Ho Talyun, Zhao Peibiao. Some invariants of quarter-symmetric metric connections under projective transformation[J]. Filomat, 2013,27(4):679-691.
[9] Lam K S, Chern S S, Chen W H. Lectures on Differential Geometry[M]. Singapore: World Scientific Publishing Co Pte Ltd, 1999.
[10] Ho Talyun. On the projective semi-symmetric connection and conformal semi-symmetric connection on the Riemannian manifold[J]. Journal of Kim Il Sung University(Natural Science), 2013,2(2):3-10.
[11] Zhao P B, Song H Z. An invariant of the projective semi-symmetric connection[J]. Chinese Quarterly J of Math, 2001,16(4):49-54.
[12] Agache N S, Chalfe M R. A semi-symmetric non-metric connection on a Riemannian manifold[J]. Indian J Pure Appl Math,1992,20(6):309-409.

备注/Memo

通信作者: 朴东哲(1960—),男,副教授,研究方向为微分几何.

更新日期/Last Update: 2015-12-20