JIANG Meiyan,PIAO Guangri.A reduced-order backward Eular finite element scheme for the BBM-Burgers equation based on POD[J].Journal of Yanbian University,2015,41(04):267-274.
基于POD方法的BBM-Burgers方程向后欧拉有限元降维格式
- Title:
- A reduced-order backward Eular finite element scheme for the BBM-Burgers equation based on POD
- 文章编号:
- 1004-4353(2015)04-0267-08
- 关键词:
- 降维模型; 向后欧拉有限元格式; 特征正交分解; 误差分析; BBM-Burgers方程
- Keywords:
- reduced-order modeling; backward Euler finite element method; proper orthogonal decomposition; error analysis; BBM-Burgers equation
- 分类号:
- O241.82
- 文献标志码:
- A
- 摘要:
- 利用特征正交分解(proper orthogonal decomposition,POD)方法讨论了BBM-Burgers方程的降维模型.首先,简要介绍了POD方法,并利用此方法把通常的向后欧拉有限元格式简化为一个自由度极少的向后欧拉有限元格式.最后,给出了降维的向后欧拉有限元解的误差估计.
- Abstract:
- In this paper, we study reduced-order modeling for the BBM-Burgers equation by using proper orthogonal decomposition(POD)method. First of all, brief review of the POD method are provided; secondly, the POD method is applied to a usual backward Euler finite element(BEFE)scheme such that it is reduced into a BEFE scheme with fewer degrees of freedom, and the errors of reduced-order BEFE solution are analyzed.
参考文献/References:
[1] Holmes P, Lumley J L, Berkooz G. Turbulence, Coherent Structures, Dynamical Systems and Symmetry[M]. Cambridge: Cambridge Univ Press, 1996.
[2] Berkooz G, Holmes P, Lumley J. The proper orthogonal decomposition in the analysis of turbulent flows[J]. Ann Rev Fluid Mech, 1993,25:539-575.
[3] Berkooz G, Titi E. Galerkin projections and the proper orthogonal decomposition for equivariant equations[J]. Phys Lett, 1993,A174:94-102.
[4] Burkardt J, Gunzburger M, Lee H C. POD and CVT-based reduced-order modeling of Navier-Stokes flows[J]. Comp Meth Appl Mech Engrg, 2006,196:337-355.
[5] Christensen E, Brons M, Sorensen J. Evaluation of proper orthogonal decomposition based decomposition techniques applied to parameter-dependent nonturbulent flows[J]. SIAM J Sci Comp, 2000,21:1419-1434.
[6] Deane A, Keverkidis I, Karniadakis G, et al. Low-dimensional models for complex geometry flows: application to grooved channels and circular cylinders[J]. Phys Fluids A, 1991,3:2337-2354.
[7] Kunisch K, Volkwein S. Control of the Burgers equation by a reduced-order approach using proper orthogonal decomposition[J]. J Optim Theory Appl, 1999,102:345-371.
[8] Lee H C, Piao G R. Boundary feedback control of the Burgers equations by a reduced-order approach using centroidal Voronoi tessellations[J]. J Sci Comp, 2010,43:369-387.
[9] Ly H V, Tran H T. Modeling and control of physical processes using proper orthogonal decomposition[J]. Comp Math Appl, 2001,33:223-236.
[10] Park H, Lee J. Solution of an inverse heat transfer problem by means of empirical reduction of modes[J]. Z Angew Math Phys, 2000,51:17-38.
[11] Park H, Lee W. An efficient method of solving the Navier-Stokes equations for flow control[J]. Int J Numer Mech Eng, 1998,41:1133-1151.
[12] Piao G R, Lee H C, Lee J Y. Distributed feedback control of the Bugers equation by a reduced-order approach using weighted centroidal Voronoi tessellation[J]. J KSIAM, 2009,13:293-305.
[13] Benjamin T B, Bona J L, Mahony J J. Model equations for long waves in nonlinear dispersive systems[J]. Phi Trans Roy Soc London: Series A, 1972,272:47-78.
[14] Bona J L, Dougalis V A. An initial and boundary value problem for a model equation for propagation of long waves [J]. J Math Anal Appl, 1980,75:503-522.
[15] Mei M. Large-Time behavior of solutions for Benjamin-Bona-Mahony-Burgers equations[J]. Nonlinear Analysis,1998,33:699-714.
[16] Zhang H, Wei G M, Gao Y T. On the general form of the Benjamin-Bona-Mahony equation in fluid mechanics[J]. Czech J Phys, 2002,52:344-373.
[17] Chen Y, Li B, Zhang H. Exact solutions of two nonlinear wave equations with simulation terms of any order[J]. Comm Nonlinear Sci Numer Simulation, 2005,10:133-138.
[18] Omrani K, Ayadi M. Finite difference discretization of the Benjamin-Bona-Mahony-Burgers(BBMB)equation [J]. Numer Meth Partial Diff Eq, 2008,24:239-248.
[19] Omrani K. The convergence of the fully discrete Galerkin approximations for the Benjamin-Bona-Mahony(BBM)equation[J]. Appl Math Comput, 2006,180:614-621.
[20] Al-Khaled K, Momani S, Alawneh A. Approximate wave solutions for generalized Benjamin-Bona-Mahony-Burgers equations[J]. Appl Math Comp, 2005,171:281-292.
[21] Kadri T, Khiari N, Abidi F, et al. Methods for the numerical solution of the Benjamin-Bona-Mahony-Burgers equation[J]. Numerical Methods for Partial Differential Equations, 2008,24:1501-1516.
[22] Piao G R, Lee H C. Distributed feedback control of the Benjamin-Bona-Mahony-Burgers equation by a reduced-order model[J]. East Asian Journal Applied Mathematics, 2015,5(1):61-74.
[23] Luo Zhendong, Zhou Yanjie, Yang Xiaozhong. A reduced finite element formulation based on proper orthogonal decomposition for Burger equation[J]. Appl Numer Math, 2009,59:1933-1946.
[24] 罗振东,陈静,谢正辉,等.抛物型方程基于POD方法的时间二阶精度CN有限元降维格式 [J].中国科学:数学,2011,41(5):447-460.
[25] Adams R A. Sobolev Space[M]. New York: Academic Press, 1975.
[26] Thomée V. Galerkin Finite Element Methods for Parabolic Problems[M]. Berlin: Springer-Verlag, 1984.
[27] Ciarlet P G. The Finite Element Method for Elliptic Problems[M]. Amsterdam: North-Holland, 1978.
[28] Atouani N, Omrani K. Galerkin finite element method for the Rosenau-RLW equation [J]. Compu Math Appl, 2013,66:289-303.
备注/Memo
通信作者: 朴光日(1968—),男,博士,副教授,研究方向为数值计算.