[1]韩英豪,张磊,杨永芳,等.分形布朗运动驱动的Navier-Stokes方程的渐近行为[J].延边大学学报(自然科学版),2015,41(02):95-102.
 HAN Yinghao,ZHANG Lei,YANG Yongfang,et al.The asymptotic behavior of the Navier-Stokes equation driven by fractional Brownian motion[J].Journal of Yanbian University,2015,41(02):95-102.
点击复制

分形布朗运动驱动的Navier-Stokes方程的渐近行为

参考文献/References:

[1] Flandoli F. Dissipativity and invariant measures for stochastic Navier-Stokes equations[J]. Nonlin Diff Eq Appl, 1994,1(4):403-423.
[2] Caraballo T, Lukaszewicz G, Real J. Pullback attractors for non-autonomous 2D-Navier-Stokes equations in some unbounded domains[J]. Comptes Rendus Mathématique, 2006,342(4):263-268.
[3] Li J, Huang J. Dynamics of stochastic non-Newtonian fluids driven by fractional Brownian motion with Hurst parameter[J]. Appl Math Mecha, 2013,34(2):189-208.
[4] Samko S G, Kilbas A A, Marichev O I. Fractional Integrals and Derivatives[M]. Switzerland: Gordon and Breach Science Publishers, 1993.
[5] Biagini F, Hu Y, ?ksendal B, et al. Stochastic Calculus for Fractional Brownian Motion and Applications[M]. London: Springer-Verlag, 2008.
[6] Alos E, Mazet O, Nualart D. Stochastic calculus with respect to Gaussians processes[J]. Ann Probab, 1999,29(2):766-801.
[7] 韩英豪,王志鹏,于吉霞.随机Ginzburg-Landau方程的拉回吸引子[J].辽宁师范大学学报:自然科学版,2013,36(4):449-456.
[8] 韩英豪,苏红,于吉霞.随机2-维纳维-斯托克斯-伯格斯方程的不变测度的存在性[J].延边大学学报:自然科学版,2013,39(3):161-166.
[9] Crauel H, Flandoli F. Attractors for random dynamical systems[J]. Probab Theory Related Fields, 1994,100(3):365-393.
[10] Maslowski B, Schmalfu? B. Random dynamics systems and stationary solutions of differential equations driven by the fractional Brownian motion[J]. Stoahstic Anal Appl, 2004,22(6):1557-1607.

备注/Memo

收稿日期: 2015-05-28 基金项目: 国家自然科学基金资助项目(61304056)通信作者: 韩英豪(1963—),男,理学博士,副教授,研究方向为无穷维动力系统.

更新日期/Last Update: 2015-05-30