HAN Yinghao,ZHANG Lei,YANG Yongfang,et al.The asymptotic behavior of the Navier-Stokes equation driven by fractional Brownian motion[J].Journal of Yanbian University,2015,41(02):95-102.
分形布朗运动驱动的Navier-Stokes方程的渐近行为
- Title:
- The asymptotic behavior of the Navier-Stokes equation driven by fractional Brownian motion
- 关键词:
- 分形布朗运动; 随机拉回吸引子; Navier-Stokes方程
- 分类号:
- O211.63; O175.29
- 文献标志码:
- A
- 摘要:
- 在具有光滑边界O的有界区域O∈R2上考虑了如下由Hurst参数为h∈(1/2,1)的分形布朗运动驱动的非自治Navier-Stokes方程的长时间动力行为(du)/(dt)+(u·)u-υΔu+p=f(x,t)+(dBh(t))/(dt).在适当的条件下,应用先验估计方法证明了由上述方程生成的随机动力系统的随机吸引子的存在性.
- Abstract:
- On a bounded domain O∈R2 with a smooth boundary O, we consider the long time dynamic behavior of the following non-autonomous Navier-Stokes equation driven by fractional Brownian motion with Hurst parameter h∈(1/2,1):(du)/(dt)+(u·)u-υΔu+p=f(x,t)+(dBh(t))/(dt). Under suitable condition, we use the uniform estimates method to prove the existence of the random pullback attractor for the random dynamical system generated by above equation.
参考文献/References:
[1] Flandoli F. Dissipativity and invariant measures for stochastic Navier-Stokes equations[J]. Nonlin Diff Eq Appl, 1994,1(4):403-423.
[2] Caraballo T, Lukaszewicz G, Real J. Pullback attractors for non-autonomous 2D-Navier-Stokes equations in some unbounded domains[J]. Comptes Rendus Mathématique, 2006,342(4):263-268.
[3] Li J, Huang J. Dynamics of stochastic non-Newtonian fluids driven by fractional Brownian motion with Hurst parameter[J]. Appl Math Mecha, 2013,34(2):189-208.
[4] Samko S G, Kilbas A A, Marichev O I. Fractional Integrals and Derivatives[M]. Switzerland: Gordon and Breach Science Publishers, 1993.
[5] Biagini F, Hu Y, ?ksendal B, et al. Stochastic Calculus for Fractional Brownian Motion and Applications[M]. London: Springer-Verlag, 2008.
[6] Alos E, Mazet O, Nualart D. Stochastic calculus with respect to Gaussians processes[J]. Ann Probab, 1999,29(2):766-801.
[7] 韩英豪,王志鹏,于吉霞.随机Ginzburg-Landau方程的拉回吸引子[J].辽宁师范大学学报:自然科学版,2013,36(4):449-456.
[8] 韩英豪,苏红,于吉霞.随机2-维纳维-斯托克斯-伯格斯方程的不变测度的存在性[J].延边大学学报:自然科学版,2013,39(3):161-166.
[9] Crauel H, Flandoli F. Attractors for random dynamical systems[J]. Probab Theory Related Fields, 1994,100(3):365-393.
[10] Maslowski B, Schmalfu? B. Random dynamics systems and stationary solutions of differential equations driven by the fractional Brownian motion[J]. Stoahstic Anal Appl, 2004,22(6):1557-1607.
备注/Memo
收稿日期: 2015-05-28 基金项目: 国家自然科学基金资助项目(61304056)通信作者: 韩英豪(1963—),男,理学博士,副教授,研究方向为无穷维动力系统.