[1]唐晓伟,孙晓辉.具依赖状态脉冲的泛函微分系统的稳定性[J].延边大学学报(自然科学版),2014,40(04):299-304.
 TANG Xiaowei,SUN Xiaohui.Stability of functional differential system with state-dependent impulses[J].Journal of Yanbian University,2014,40(04):299-304.
点击复制

具依赖状态脉冲的泛函微分系统的稳定性

参考文献/References:

[1] 傅希林,闫宝强,刘衍胜.脉冲微分系统引论[M].北京:科学出版社,2005.
[2] 傅希林,闫宝强,刘衍胜.非线性脉冲微分系统[M].北京:科学出版社,2008.
[3] 傅希林,范进军.非线性微分方程[M].北京:科学出版社,2010.
[4] Yan Baoqiang, Fu Xilin. Existence of solution for impulsive functional differential equations with infinite delay[J]. Chin Sci Abs, 1999,5(12):1497-1498.
[5] Lakshmikantham V, Liu Xinzhi. Stability analysis in terms of two measures[M]. Singapore: World Scientic, 1993.
[6] Zhang Yu, Sun Jitao. Strict stability of impulsive functional differential equations[J]. Math Anal Appl, 2005,301(1):237-248.
[7] Zhang Shunian. A new approach to stability theory of infinite delay differential equations[J]. Comput Math Appl, 2002,44(10):1275-1287.
[8] Luo Zhiguo, Shen Jianhua. Stability of functional differential equations with infinite delays[J]. Appl Math B, 2005,20(2):142-150.
[9] Luo Zhiguo, Shen Jianhua. Stability and boundedness results for impulsive functional differential equations with infinite delays[J]. Nonlinear Anal, 2001,46(4):475-493.
[10] Zhang Yu, Sun Jitao. Stability of impulsive infinite delay differential equations[J]. Appl Math Lett, 2006,19(10):1100-1106.
[11] 窦家维,李开泰.一类脉冲微分方程零解的稳定性[J].系统科学与数学,2004,24(1):56-63.
[12] 张瑜,王春燕,孙继涛.具有可变脉冲点的脉冲微分方程的稳定性[J].数学物理学报,2005,25(6):777-783.
[13] 罗宏,蒲志林,陈光淦.具有可变脉冲扰动的时滞脉冲微分方程解的稳定性[J].四川师范大学学报,2002,25(6):18-21.
[14] Kaul S. Vector Lyapunov functions in impulsive variable-time differential system[J]. Nonlinear Anal,1997,30(5):2695-2698.
[15] Liu Xinzhi, Wang Qing. Stability of nontrivial solution of delay differential equations with state-dependent impulses[J]. Appl Math Comput, 2006,174(1):271-288.
[16] Wang Lin, Fu Xilin. A new comparison principle for impulsive differential systems with variable impulsive perturbations and stability theory[J]. Comput Math Appl, 2007,54:730-736.
[17] Tang Xiaowei, Fu Xilin.New comparison principle with Razumikhin condition for impulsive infinite delay differential systems[J]. Discrect and Continuous Dynamical Systems-Supplement, 2009:739-743.

备注/Memo

收稿日期: 2014-06-27 作者简介: 唐晓伟(1983—),女,讲师,研究方向为微分方程稳定性.基金项目: 山东省优秀中青年科学家科研奖励基金资助项目(BS2012DX039); 国家自然科学基金资助项目(11301308)

更新日期/Last Update: 2014-12-20