PENG Jiankui,YU Jianning,ZHANG Li.Dynamics analysis and chaos control of a two-dimensions discrete map with rational fractionation[J].Journal of Yanbian University,2014,40(03):240-244.
一个二维含有理分式离散混沌映射的分析与控制
- Title:
- Dynamics analysis and chaos control of a two-dimensions discrete map with rational fractionation
- Keywords:
- rational fractionation; discrete chaotic maps; wavelet transformation; contraction maps; chaos control
- 分类号:
- O322
- 文献标志码:
- A
- 摘要:
- 借助非线性特征研究工具构造了二维含有理分式离散映射,然后运用最大Lyapunov指数谱和分岔图研究该二维有理分式离散映射的动力学行为,最后利用改进形式的小波函数构造压缩映射,对二维有理分式混沌映射进行了有效的混沌控制.通过理论分析和数值模拟,验证了该混沌控制方法的实用性和有效性.
- Abstract:
- A two-dimensions discrete chaotic map with rational fractionation is constructed by nonlinear characteristics tools. Then, its dynamic behaviors is studied with the largest Lyapunov exponents spectrum and global bifurcation diagram. Finally, the chaotic attractor can be controlled effectively and fleetly by nonlinear contraction maps, which are composed of improved wavelet functions form. The utility and validity of this new method is validated with theory analysis and numerical simulation.
参考文献/References:
[1] Wu Z M, Xie J Y, Fang Y Y. Controlling chaos with periodic parametric perturbations in Lorenz system[J]. Chaos, Solitons and Fractals, 2007,32:104-112.
[2] 彭建华,刘秉正.非线性动力学[M].北京:高等教育出版社,2004:485-498.
[3] 曹书豪,徐红梅.Logistic映射及其混沌序列特性分析[J].延边大学学报:自然科学版,2014,40(2):134-137.
[4] 胡岗,萧井华,郑志刚.混沌控制[M].上海:上海科技教育出版社,2000:120-186.
[5] Yagasaki K. Extension of a chaos control method to unstable trajectories on infinite-or finite-time intervals: experimental verification[J]. Phys Lett A, 2007,36(8):222-226.
[6] 李险峰,张建刚,褚衍东,等.Lozi混沌映射的线性反馈控制[J].河北师范大学学报,2007,31(4):479-483.
[7] 张永祥,俞建宁.Jeffcott碰摩转子系统混沌控制研究[J].山东大学学报:工学版,2006,10(5):117-119.
[8] Lu Jun’an, Wu Xiaoqun, Lü Jinhu, et al. A new discrete chaotic system with rational fractionation and its dynamical behaviors[J]. Chaos Solitons and Fractals, 2004,22:311-319.
[9] 彭战松,俞建宁,彭建奎.一个新离散系统的混沌控制与反控制[J].天津师范大学学报,2008,28(4):54-56.
[10] Shi Y, Chen G. Discrete chaos in Banach spaces[J]. Science in China Series A: Mathematics, 2005,48(2):222-238.
备注/Memo
收稿日期: 2014-04-15 作者简介: 彭建奎(1982—),男,讲师,研究方向为非线性动力学.基金项目: 甘肃省高等学校科研项目(2013A-135); 甘肃省自然科学基金资助项目(3ZS-051-A25-030,3ZS-042-B25-049)