XU Yingying,ZHOU Liping,FAN Qiang,et al.A numerical solution of the BBMB equation based on cubic B-spline finite element method[J].Journal of Yanbian University,2014,40(03):194-198.
基于三次B样条有限元法的BBMB方程数值解
- Title:
- A numerical solution of the BBMB equation based on cubic B-spline finite element method
- 关键词:
- 三次B样条; 有限元法; Crank-Nicolson差分法; BBMB方程
- 分类号:
- O242.21
- 文献标志码:
- A
- 摘要:
- 对空间和时间坐标分别采用三次B样条有限法和Crank-Nicolson差分法求得非线性BBMB方程的数值解,应用Von-Neumann稳定性理论证明了此方法的无条件稳定性,并且通过两个例子验证了该方法的有效性与可行性.
- Abstract:
- A cubic B-spline finite element method for the spatial variable combined with a Crank-Nicolson scheme for the time variable is proposed to approximate a solution of Benjamin-Bona-Mahony-Burgers(BBMB)equation. Von-Neumann scheme is proposed to analyze the unconditionary stability of the present method. Finally, through two examples we demanstrate the effectiveness and feasibility of this method.
参考文献/References:
[1] Benjamin T B, Mahony J J. Model equations for long waves in nonlinear dispersive systems[J]. Philosophical Transactions of the Royal Society of London, 1972,272:47-78.
[2] Korteweg D J, de Vries G. On the change of form of long waves advancing in a rectangular canal and on a new type of long stationary waves[J]. Philosophical Magazine, 1895,39:422-433.
[3] Ewing R E. Time-stepping Galerkin methods for nonlinear Sobolev partial differential equation[J]. SIAM Journal on Numerical Analysis, 1978,15:1125-1150.
[4] Omrani K. The convergence of the fully discrete Galerkin approximations for the Benjamin-Bona-Mahony(BBM)equation[J]. Appl Math Comput, 2006,180:614-621.
[5] Raupp M A. Galerkin methods applied to the Benjamin-Bona-Mahony equation[J]. Boletim da Sociedade Brazilian Mathematical, 1975,6:65-77.
[6] Wahlbin L. Error estimates for a Galerkin methods for a class of model equations for long waves[J]. Numerische Mathematic, 1975,23:289-303.
[7] Achouri T, Khiari N, Omrani K. On the convergence of difference schemes for the Benjamin-Bona-Mahony(BBM)equation[J]. Appl Math Comput, 2006,182:999-1005.
[8] Kannan R, Chung S K. Finite difference aapproximate solutions for the two-dimensional Burgers system[J]. Comput Math Appl, 2002,44:194-200.
[9] Omrani K, Ayadi M. Finite difference discretization of the Benjamin-Bona-Mahony(BBM)equation[J]. Numer Meth Part Differ Equat, 2008,24:239-248.
[10] Al-Khaled K, Momani S, Alawneh A. Approximate wave solutions for generalized Benjamin-Bona-Mahony(BBMB)equations[J]. Appl Math Comput, 2005,171:281-292.
[11] Kaya D. A numerial simulation of solitary-wave solutions of the generalized regularized long-wave equation[J]. Appl Math Comput, 2004,149:833-841.
[12] Aksan E N. Quadratic B-spline finite element method for numerical solution of the Burgers equation[J]. Appl Math Comput, 2006,174:884-896.
[13](¨overO)zis T, Esen A, Kutluay S. Numerical solution of Burgers equation by quadratic B-spline finite element[J]. Appl Math Comput, 2005,165:237-249.
[14] Zarebnia M, Parvaz R. Cubic B-spline collocation method for numerical solution of the Benjamin-Bona-Mahony(BBMB)equation[J]. International Journal of Mathematical Sciences, 2013,7:34-37.
备注/Memo
收稿日期: 2014-06-03*通信作者: 朴光日(1968—),男,博士,副教授,研究方向为计算数学.