[1]李宝玲,葛琦*.一类带有p -Laplacian算子的分数阶差分方程的多重解[J].延边大学学报(自然科学版),2014,40(02):104-108.
 LI Baoling,GE Qi*.Multiple solutions for a class of fractional difference equations involving the p -Laplacian operator[J].Journal of Yanbian University,2014,40(02):104-108.
点击复制

一类带有p -Laplacian算子的分数阶差分方程的多重解

参考文献/References:

[1] Kilbas A A, Srivastava H M, Trujillo J J. Theory and Applications of Fractional Differential Equations[M]. Amsterdam: Elsevier, 2006.
[2] Podlubny I. Fractional Differential Equations[M]. San Diego, CA: Academic Press, 1999.
[3] Atici F M, Eloe P W. Two-point boundary value problems for finite fractional difference equations[J]. Difference Equations Applications, 2010,17(4):445-456.
[4] Goodrich C S. Solutions to a discrete right-focal fractional boundary value problem[J]. Difference Equations, 2010,5(2):195-216.
[5] Goodrich C S. On discrete sequential fractional boundary value problem[J]. J Math Anal Appl, 2012,385:111-124.
[6] Atici F M, Eloe P W. A transform method in discrete fractional calculus[J]. Int J Difference Equ, 2007,2(2):165-176.
[7] Atici F M, Sevgi Sengül. Modeling with fractional difference equations[J]. J Math Anal Appl, 2010,369:1-9.
[8] He Yansheng, Hou Chengmin. Existence of solutions for discrete fractional boundary value problems with p -Laplacian operator[J]. Journal of Mathematical Research with Applications, 2014,34(2):197-208.
[9] Frank Ayres. Schaum’s Outline of Theory and Problems of Matrices[M]. New York: Schaum, 1962:134.
[10] Pasquale Candito, Nicola Giovannelli. Multiple solutions for a discrete boundary value problem involving the p-Laplacian[J]. Computers and Mathematics with Applications, 2008,56:959-964.

相似文献/References:

[1]吴凡,东雨薇,侯成敏*.带有p-Laplacian算子的四阶偏差分方程的多重同宿解[J].延边大学学报(自然科学版),2016,42(01):1.
 WU Fan,DONG Yuwei,HOU Chengmin*.Multiple homoclinic solutions for the partial difference equations with p-Laplacian operator[J].Journal of Yanbian University,2016,42(02):1.
[2]韩亮,谢君辉.无界区域上一类带有权函数的半线性椭圆方程解的存在性[J].延边大学学报(自然科学版),2023,(01):26.
 HAN Liang,XIE Junhui.Existence of solutions for a class of semilinear elliptic equations with weight function in unbounded domains[J].Journal of Yanbian University,2023,(02):26.

备注/Memo

收稿日期: 2013-12-27 基金项目: 国家自然科学基金资助项目(11161049)*通信作者: 葛琦(1975—),女,副教授,研究方向为微分方程理论及应用.

更新日期/Last Update: 2014-06-20