[1]王薇,何延生*.周期脉冲效应下一个捕食-食铒系统的灭绝与持续生存[J].延边大学学报(自然科学版),2013,39(03):172-178.
 WANG Wei,HE Yansheng*.Extinction and permanence of a predator-prey system with periodic impulsive effect[J].Journal of Yanbian University,2013,39(03):172-178.
点击复制

周期脉冲效应下一个捕食-食铒系统的灭绝与持续生存

参考文献/References:

[1] Cushing J M. Two species competition in a periodic envifonment[J]. Joumal of Mathematical Biology, 1980,10:348-400.
[2] 庞国平.具有脉冲效应的两食饵一捕食者系统分析[J].数学的实践与认识,2007,37(16):129-133.
[3] Chen Lansun. Mathematical Models and Methods in Ecology[M]. Beijing: Chinese Science and Technology Publishing House, 1988:129-138.
[4] Montes de Oca F, Zeeman M L. Extinction in nonautonomous competitive Lotka-volterra system[J]. Proc Am Math Soc, 1996,124:3677-3687.
[5] Ahmad S, Montes de Oca F. Extinction in nonautonomous T-periodic competitive Lotka-volterra system[J]. Appl Math Comput, 1998,90:155-166.
[6] Hua Hongxiao, Teng Zhidong, Gao Shujing. Extinction in nonautonomous Lotka-volterra competitive system with pure-delays and feedback controls[J]. Nonlinear Analysis, 2009,10:2508-2520.
[7] Hui Jing, Chen Lansun. Extinction and permanence of a predator-prey system with impulsive effect[J]. Mathematica Applicate, 2005,18(1):1-7.
[8] Bainov D D, Simeonov P S. System with impulsive effect: stability theory and applications[J]. Journal of Applied Mathematics and Mechanics, 1991,71(10):419.
[9] Laksmikantham V, Baivov D D,Simeonov P S. Theory of Impulsive Differential Equations[M]. Singapore: World Scientific, 1989:234-240.

备注/Memo

收稿日期: 2013-02-27
基金项目: 国家自然科学基金资助项目(11161049)
*通信作者: 何延生(1962—),男,副教授,研究方向为微分方程理论及应用.

更新日期/Last Update: 2013-06-30