DAI Hu,YUAN Zhe*,LIU Chunbao,et al.Flow field analysis and characteristic prediction of HC375 hydrodynamic torque converter based onscale -resolving simulation[J].Journal of Yanbian University,2021,47(02):180-184.
基于尺度解析模拟的HC375液力变矩器的流场分析与特性预测
- Title:
- Flow field analysis and characteristic prediction of HC375 hydrodynamic torque converter based onscale -resolving simulation
- 文章编号:
- 1004-4353(2021)02-0180-05
- 分类号:
- TH137
- 文献标志码:
- A
- 摘要:
- 针对传统的一维束流研究方法无法描述大功率液力变矩器工作腔内复杂的时变瞬态湍流的流动状态,采用多物理场耦合方法构建了一种介质流动与传热的动态耦合数值模型,并给出了液力变矩器瞬态仿真设计方法.通过定性和定量分析液力变矩器内部的流动结构发现,动态混合模型(Dynamic hybrid RANS - LES, DHRL)中的SBES(Stress -blended eddy simulation)方法能够充分识别工作腔内边界层的流动状态,可实现对多流域耦合复杂流动现象的精准捕捉.通过台架实验表明,采用DES模型和
- Abstract:
- Aiming at the traditional one - dimensional beam research method can not describe the complex time -varying transient turbulent flow state in the working cavity of high -power hydrodynamic torque converter, the multi physical field coupling method is used to build the dynamic coupling numerical model of medium flow and heat transfer, and the transient simulation design method of hydrodynamic torque converter is given. Through the qualitative and quantitative analysis of the flow structure in the hydrodynamic torque converter, it is found that the SBES method in DHRL can fully distinguish the flow of boundary layer in the working cavity and accurately capture the complex flow phenomenon of multi flow domains coupling. The results of bench test show that the maximum error of external characteristics of hydrodynamic torque converter calculated by DES and SBES models is less than 6%, and they are significantly better than RANS and LES models. Therefore, the research results of this paper can provide a reference for efficient design and development of hydrodynamic torque converter.
参考文献/References:
[1] 马文星.液力传动理论与设计[M].北京:化学工业出版社,2004.
[2] 闫清东,魏巍,刘城.液力传动技术发展与展望[J].液压气动与密封,2021,41(2):1-8.
[3] 王安麟,赵一鸣,李晓田,等.采用代理模型的液力变矩器性能优化设计[J].西安交通大学学报,2020,54(10):1-8.
[4] 闫清东,孟祥禄,魏巍.考虑泄漏区的液力变矩器流场数值模拟[J].华中科技大学学报(自然科学版),2018,46(11):36-40.
[5] 吴光强,陈洁.基于计算流体力学的循环圆设计参数对液力变矩器的性能影响预测[J].同济大学学报(自然科学版),2020,48(7):1040-1048.
[6] 单丰武.基于CFD的汽车液力变矩器泵体内部流场研究[J].机械设计与制造工程,2017,46(10):93-96.
[7] 王迪,常山,岳彦炯.CFD仿真设计新型双涡轮导叶可调式液力变矩器[J].热能动力工程,2018,33(12):93-97.
[8] 刘春宝,李静,徐志轩,等.液力变矩器热流动尺度解析模拟与特性精确预测[J].机械工程学报,2018,54(18):146-153.
[9] 刘春宝,李静,卜卫羊,等.尺度解析湍流模拟方法在液力传动流动数值模拟中的应用[J].液压与气动,2019(6):58-62.
[10] LIU C, MA W, ZHU X. 3D transient calculation of internal flow field for hydrodynamic torque converter[J]. Journal of Mechanical Engineering, 2010,46(14):161-166.
[11] HUNT J C R, WRAY A A, MOIN P. Eddies, streams, and convergence zones in turbulent flows[C]//Proceedings of the 1988 Summer Program. Stanford: NASA Centre for Turbulence Research, 1988:193-208.
相似文献/References:
[1]袁哲,刘春宝,岳利维,等.液力变矩器仿生叶片压降性能试验[J].延边大学学报(自然科学版),2020,46(04):371.
YUAN Zhe,LIU Chunbao,YUE Liwei,et al.Pressure drop performance test of bionic blades in hydrodynamic torque converter[J].Journal of Yanbian University,2020,46(02):371.
备注/Memo
收稿日期: 2021-04-12 *通信作者: 袁哲(1984—),男,博士,高级工程师,研究方向为液力传动与自动变速.
基金项目: 吉林省教育厅“十三五”科学技术研究项目(JJKH20200953KJ); 浙江省博士后科研项目(ZJ2020069)