[1]金丹丹,闻辉*.基于RBF -BP神经网络融合的医学数据分类研究[J].延边大学学报(自然科学版),2021,47(01):70-74.
 JIN Dandan,WEN Hui*.Research on medical data classification based on RBF -BP neural network fusion[J].Journal of Yanbian University,2021,47(01):70-74.
点击复制

基于RBF -BP神经网络融合的医学数据分类研究

参考文献/References:

[1] DING S F, SU C Y, YU J Z. An optimizing BP neural network algorithm based on genetic algorithm[J]. Artificial Intelligence Review, 2011,36(2):153-162.
[2] VETELA J E, REIFMAN J. Premature saturation in back -propagation networks: mechanism and necessary conditions[J]. Neural Networks, 1997,10(4):721-735.
[3] BHAYA A, KASZKUREWICZ E. Steepest descent with momentum for quadratic functions is a version of the conjugate gradient method[J]. Neural Networks, 2004,17:65-71.
[4] RIMER M, MARTINEZ T. CB3: An adaptive error function for back propagation training[J]. Neural Processing Letters, 2006,24(1):81-92.
[5] CHEN C H, YAO T K, KUO C M, et al. Evolutionary design of constructive multilayer feedforward neural network[J]. Journal of Vibration and Control, 2013,19(16):2413-2420.
[6] MOODY J, DARKEN C J. Fast learning in networks of locally -tuned processing[J]. Neural Computation, 1989,1(2):281-294.
[7] WU Q, WANG X J, SHEN Q H. Research on dynamic modeling and simulation of axial -flow pumping system based on RBF neural network[J]. Neurocomputing, 2016,186:200-206.
[8] 张爱科,符保龙,李辉.基于改进的模糊聚类RBF网络集成的文本分类方法[J].四川大学学报(自然科学版),2012,49(6):1235-1239.
[9] 韩红桂,乔俊飞,薄迎春.基于信息强度的RBF神经网络结构设计研究[J].自动化学报,2012,38(7):1083-1090.
[10] 黄朝辉,闻辉,车艳.基于势函数聚类的改进RBF网络算法研究[J].延边大学学报(自然科学版),2020,46(2):145-149.
[11] BLAKE C, MERZ C. UCI repository of machine learning databases[EB/OL]. [2020-10-13]. http://archive.ics.uci.edu/ml/35.

备注/Memo

收稿日期: 2020-12-07
*通信作者: 闻辉(1981—),男,博士,副教授,研究方向为机器学习及神经网络.
基金项目: 福建省自然科学基金(2019J01815); 莆田市科技局项目(2018RP4004); 福建省教育科学“十三五”规划项目(FJJKCG20-101)

更新日期/Last Update: 2021-04-20