YU Ying,HUANG Fenghua,RUAN Qi.Classification of multi-class support vector machines based on improved particle swarm optimization and CRNN[J].Journal of Yanbian University,2019,45(03):215-220.
基于改进粒子群优化算法和CRNN的多类SVM分类
- Title:
- Classification of multi-class support vector machines based on improved particle swarm optimization and CRNN
- 文章编号:
- 1004-4353(2019)03-0215-06
- Keywords:
- particle swarm optimization; cooperative recurrent neural network; support vector machine; multi-class classification
- 分类号:
- TP301.6
- 文献标志码:
- A
- 摘要:
- 为了提高支持向量机(SVM)在多类分类中的分类效果,提出了一种基于改进粒子群优化(IMPSO)算法和协作式递归神经网络(CRNN)的多类SVM分类方法(IMPSO_CRNN_SVM算法).首先引入自适应惯性权重及自适应粒子变异,以此改进粒子群优化算法(PSO)在优化SVM参数过程中存在的容易陷入局部最优和早熟等问题; 然后基于多类SVM设计一个CRNN,并利用随机分配的训练集对该网络进行训练并构建最终决策函数,从而实现多类数据的“一次性”分类.最后利用3种数据集和实际应用对IMPSO_CRNN_SVM算法进行验证,结果表明IMPSO_CRNN_SVM算法的分类精度优于未进行参数优化的传统SVM算法、基本PSO 进行SVM参数优化的算法和未进行PSO参数优化的基于CRNN的多类支持向量机算法,因此IMPSO_CRNN_SVM算法具有一定的实用性.
- Abstract:
- Aiming at the factors that affect the application of support vector machine(SVM)in multi-class classification, a multi-class SVM classification method(IMPSO_CRNN_SVM algorithm)based on improved particle swarm optimization algorithm(IMPSO)and cooperative recurrent neural network(CRNN)was proposed. Firstly, adaptive inertia weight and adaptive particle variation were introduced to improve the problem of local optimization and prematurity of particle swarm optimization algorithm(PSO)in the process of optimizing SVM parameters. Then, based on multi-class SVM technology, a CRNN was designed. The randomly assigned training set was used to train the network to construct the final decision function, so as to realize the "one -step" classification of multi-class data. Finally, the IMPSO_CRNN_SVM algorithm is verified by different data sets and practical applications. The results show that the classification accuracy of IMPSO_CRNN_SVM algorithm is better than that of SVM algorithm without parameter optimization or traditional PSO parameter optimization and multi-class SVM based on CRNN without parameter optimization, and it has certain practicability.
参考文献/References:
[1] CORINNA Cortes, VLADIMIR Vapnik. Supprot vector networks[J]. Machine Learning, 1995,20(3):273-297.
[2] 庄严,白振林,许云峰.基于蚁群算法的支持向量机参数选择方法研究[J].计算机仿真,2011,28(5):216-219.
[3] 刘鲭洁,陈桂明,刘小方,等.基于遗传算法的SVM参数组合优化[J].计算机应用与软件,2012,29(4):94-96.
[4] 李楠,朱秀芳,潘耀忠,等.人工蜂群算法优化的SVM遥感影像分类[J].遥感学报,2018,22(4):559-569.
[5] 邱云飞,李智义.改进人工鱼群算法在SVM参数优化中的应用[J].计算机工程与科学,2018,40(11):2076-2078.
[6] SUBAI A. Classification of EMG signals using PSO optimized SVM for diagnosis of neuromuscular disorders[J]. Computers in Biology and Medicine, 2013,43(5):576-586.
[7] 王振武,孙佳骏,尹成峰.改进粒子群算法优化的支持向量机及其应用[J].哈尔滨工程大学学报,2016,37(12):1728-1733.
[8] 张进,丁胜,李波.改进的基于粒子群优化的支持向量机特征选择和参数联合优化算法[J].计算机应用,2016,36(5):1330-1335.
[9] 于梦馨,刘波,汤恩生.改进粒子群算法优化SVM参数的遥感图像分类[J].航天返回与遥感,2018,39(2):133-140.
[10] 张国梁,贾松敏,张祥银,等.采用自适应变异粒子群优化SVM的行为识别[J].光学精密工程,2017,25(6):1669-1678.
[11] 赵志刚,黄树运,王伟倩.基于随机惯性权重的简化粒子群优化算法[J].计算机应用研究,2014,31(2):361-364.
[12] HSU C W, LIN C J. A comparison of methods for multi-class support vector machines[J]. IEEE Transaction on Neural Network, 2002,13(2):415-425.
[13] BREDENSTEINER E J, BENNETT K P. Multicategory classification by support vector machines[J]. Computational Optimization and Applications, 1999,12(1):53-79.
[14] 于梦馨,刘波,汤恩生.改进粒子群算法优化SVM参数的遥感图像分类[J].航天返回与遥感,2018,39(2):133-140.
[15] 张俊红,刘昱,马文朋,等.基于GAPSO-SVM的航空发动机典型故障诊断[J].天津大学学报,2012,45(12):1057-1061.
[16] HU Z X, HU Y M, LIU J, et al. A CRNN module for hand pose estimation[J]. Neurocomputing, 2019,333:157-168.
[17] LI W, CAO L, ZHAO D, et al. CRNN: Integrating classification rules into neural network[C]//Dallas: International Joint Conference on Neural Networks, 2015.
备注/Memo
收稿日期: 2019-08-10
基金项目: 福建省自然科学基金资助项目(2019J01088)
作者简介: 俞颖(1984—),女,讲师,研究方向为数据挖掘、模式识别.