HAN Yurui,DU Antian,GU Guangrui*.Study on the mechanical and tribological properties of Ti-doped NbN films deposited by magnetron sputtering[J].Journal of Yanbian University,2019,45(03):208-214.
磁控溅射Ti掺杂NbN薄膜的机械和摩擦学特性研究
- Title:
- Study on the mechanical and tribological properties of Ti-doped NbN films deposited by magnetron sputtering
- 文章编号:
- 1004-4353(2019)03-0208-07
- 分类号:
- O484.4
- 文献标志码:
- A
- 摘要:
- 为研究Ti掺杂的NbN薄膜的机械和摩擦学特性,采用射频和直流磁控共溅射技术制备了Ti掺杂的NbN(Ti:NbN)薄膜.利用X射线衍射仪(XRD)、能量色散X射线光谱仪(EDX)、扫描电子显微镜(SEM)、纳米压痕仪、高温摩擦磨损实验机分别对Ti掺杂的NbN薄膜的微观结构、组成成分、表面形貌、机械和摩擦学性能进行了研究.XRD测试结果显示,薄膜的结晶性随着Ti靶掺杂功率的增加(从0 W逐渐升高到40 W)而呈明显增强趋势,晶粒尺寸也由18.010 nm增加到21.227 nm.当Ti靶的掺杂功率为30 W时,NbN薄膜的硬度由4.5 GPa(未掺杂)增加到20.4 GPa,弹性模量由145.8 GPa(未掺杂)增加到224.5 GPa; 当Ti靶的掺杂功率为40 W时,NbN薄膜的摩擦系数由0.73(未掺杂)下降到0.51,磨损率由3.3×10-6 mm3/(N·mm)(未掺杂)下降到2.1×10-6 mm3/(N·mm).这表明,掺杂Ti可使NbN薄膜的机械性能和摩擦学性能得到很大的改善.
- Abstract:
- In order to study the mechanical and tribological properties of Ti-doped NbN films, Ti-doped NbN(Ti:NbN)films were prepared by RF and DC magnetron co-sputtering. The structure, composition, surface morphology, mechanical and tribological properties were studied by X -ray diffractomer(XRD), energy dispersive X -ray spectrometer(EDX), scanning electron microscopy(SEM), nanoindentation and high temperature friction and wear testing machine, respectively. XRD results show that the crystallinity of the film increases significantly with increasing Ti target doping power(gradually increasing from 0 W to 40 W), and the grain size increases from 18.010 nm to 21.227 nm. When the doping power of Ti target is 30 W, the hardness of NbN films increased from 4.5 GPa(undoped)to 20.4 GPa, and the elastic modulus from 145.8 GPa(undoped)to 224.5 GPa. And when the doping power of Ti target is 40 W, the friction coefficient of NbN thin films decreases from 0.73(undoped)to 0.51, and the wear rate from 3.3×10-6 mm3/(N·mm)(undoped)to 2.1×10-6 mm3/(N·mm). The results show that the mechanical and tribological properties of NbN thin films can be greatly improved by doping metal Ti.
参考文献/References:
[1] VEPREK S, NIEDERHOFER A, MOTO K, et al. Composition nanostructure and origin of the ultrahardness in nc -TiN/a - Si3N4 /a - and nc -TiSi2 nanocomposites with HV=80 to ≥105 GPa[J]. Surface and Coatings Technology, 2000,133/134:152-159.
[2] ZHAO H J, MI P B, YE F X. Compared the oxidation behavior of TiN and TiN/W2N ceramic coatings during heat treatment[J]. Materials Chemistry and Physics, 2016,217(15):445-450.
[3] WANG M X, ZHANG J J, YANG J L, et al. Synthesis of nanoscale multilay-ered ZrN/W2N multilayered coatings by magnetron sputtering[J]. Surface and Coatings Technology, 2018,201(15):6800-6803.
[4] DONG Y S, LIU Y, DAI J W, et al. Superhard Nb -Si-N composite films synthesized by reactive magnetron sputtering[J]. Applied Surface Science, 2006,252(14):5215-5219.
[5] EZIRMIK K V, ROUHI S. Influence of Cu additions on the mechanical and wear properties of NbN coatings[J]. Surface and Coatings Technology, 2014,260:179-185.
[6] JU H B, XU J H. Microstructure and tribological properties of NbN-Ag composite films by reactive magnetron sputtering[J]. Applied Surface Science, 2015,355:878-883.
[7] RASAKI S A, ZHANG B X, ANBALGAM K, et al. Synthesis and application of nanostructured metal nitrides and carbides: a review[J]. Progress in Solid State Chemistry, 2018,50:1-15.
[8] WITKOWSKA A, KSCIELSKA B. XAFS investigations of nitrided NbN-SiO2 solgel derived films[J]. Journal of Non-Crystalline Solids, 2012,358(5):969-974.
[9] LARSSON M, HOLLMAN P, HEDENQVIST P, et al. Deposition and microstructure of PVD TiN/NbN multilayered coatings by combined reactive electron beam evaporation and DC sputtering[J]. Surface and Coatings Technology, 1999,86/87:351-356.
[10] MAMUN M A, FARHA A H, ER A O, et al. Nanomechanical properties of NbN films prepared by pulsed laser deposition using nanoindendation[J]. Applied Surface Science, 2012,258(10):4308-4313.
[11] FENKER M, BALZER M, BÜCHI R V, et al. Deposition of NbN thin films onto high -speed steel using reactive magnetron sputtering for corrosion protective applications[J]. Surface and Coatings Technology, 2003,163/164:169-175.
[12] ZHOU Y, GU D, GENG Y, et al. Structural and optical properties of NiOx thin films deposited by reactive dc-magnetron sputtering[J]. Materials Science and Engineering B, 2006,135(2):125-128.
[13] WANG M, THIMONT Y, PRESMANES L, et al. The effect of the oxygen ratio control of DC reactive magnetron sputtering on as-deposited non stoichiometric NiO thin films[J]. Applied Surface Science, 2017,419:795-801.
[14] PARK J W, KIM D Y, LEE J K. Reproducible resistive switching in nonstoichiometric nickel oxide films grown by rf reactive sputtering for resistive random access memory application[J]. Journal of Vacuum Science and A, 2005,23(23):1309-1313.
[15] ZHAO Y, WANG H, GONG X, et al. Effect of lithium-ion doping concentration on structural and optical properties of NiO films fabricated by magnetron sputtering[J]. Vacuum, 2017,137(1):56-59.
[16] 丁志博,姚淑德,王坤,等.Si(111)衬底上生长有多缓冲层的六方GaN晶格常数计算和应变分析[J].物理学报,2006,55:2977-2981.
[17] 刘爽.TiN基纳米复合膜的微结构、机械及摩擦磨损性能影响研究[D].镇江:江苏科技大学,2018.
[18] REITER A E, DERFLINGER V H, HANSELMANN B, et al. Investigation of the properties of Al1-xCrxN coatings prepared by cathodic arc evaporation[J]. Surface and Coatings Technology, 2005,200(7):2114-2122.
[19] LI D K, CHEN J F, ZOU C W, et al. Effects of Al concentrations on the microstructure and mechanical properties of Ti-Al-N films deposited by RF-ICPIS enhanced magnetron sputtering[J]. Journal of Alloys and Compounds, 2014,609:239-243.
[20] SANJINÉS R, BANAKH O, ROJAS C, et al. Electronic properties of Cr1-xAlxN thin films deposited by reactive magnetron sputtering[J]. Thin Solid Films, 2002,420/421:312-317.
[21] LAMNI R, SANJINÉS R, LÉVY F. Electrical and optical properties of Zr1-xAlxN thin films[J]. Thin Solid Films, 2005,478(1/2):170-175.
相似文献/References:
[1]崔伟哲,韩玉蕊,顾广瑞*.SnO2 - CdO复合薄膜的制备及其光电性能研究[J].延边大学学报(自然科学版),2021,47(03):228.
CUI Weizhe,HAN Yurui,GU Guangrui*.Preparation and properties of SnO2- CdO composite films[J].Journal of Yanbian University,2021,47(03):228.
备注/Memo
收稿日期: 2019-06-18
基金项目: 国家自然科学基金资助项目(51272224)
*通信作者: 顾广瑞(1970—),男,博士,教授,研究方向为功能材料物理.