HUANG Hongyun,WU Libing*,LI Shizheng,et al.An improved IPSO-BP neural network in stock market index forecasting — A case study of Shanghai Composite Index[J].Journal of Yanbian University,2016,42(04):351-356.
一种改进的IPSO-BP神经网络在股指预测中的应用 ——以上证综指为例
- Title:
- An improved IPSO-BP neural network in stock market index forecasting — A case study of Shanghai Composite Index
- Keywords:
- stock index; prediction; BP neural network; particle swarm optimization; dynamic inertia factor
- 分类号:
- TP183; F830.91; O29
- 文献标志码:
- A
- 摘要:
- 针对股票数据具有规模庞大、结构复杂、多噪声和高度模糊非线性等特点而导致预测难的问题,利用改进的粒子群算法(固定惯性因子动态化)优化BP网络权阀值,建立了一个基于历史日收盘价、最低价、最高价、成交量、成交额、涨跌幅为输入变量,日开盘价为输出变量的预测模型.利用MATLAB软件对2007年1月4日至2015年8月31日上证综指(开盘价)进行了仿真预测,并且从绝对误差与相对误差等角度对比分析了BP网络优化前后的预测结果,结果表明IPSO优化后的BP网络不仅可以更快地实现收敛寻优,而且在对未来股价的趋势判断与指数
- Abstract:
- For the stock data has the characteristics of large scale, complex structure, multi-noise and highly fuzzy nonlinearity, resulting in the forecast for the stock index has been a difficult problem. This paper uses an Back Propagation Neural Network Optimized by an Improved Particle Swarm algorithm(Dynamic the Fixed Inertia Factor)to establishe a forecasting model based on the historical closing price, the lowest price, the highest price, the trading volume, the turnover, the rising price as the input variable and the daily opening price as the output variable. Using MATLAB software to predict the Shanghai Composite Index(opening price)from Jan.4, 2007 to Aug.31, 2015, and the results of BP Neural Network Optimized before and after was compared and analyzed in terms of absolute error and relative error. It is concluded that the BP Neural Network Optimized by the IPSO algorithm has a better effect on the future stock price trend judgment and index forecasting.
参考文献/References:
[1] 丁忠明,黄华继.证券投资学[M].北京:高等教育出版社,2013:180-270.
[2] 潘贻超.多元时序与滞后协整混合模型及其在股指预测中的应用[D].湖北:武汉理工大学,2007.
[3] 张晶,王宏勇.股指时间序列的分形分析及预测[J].南京财经大学学报,2013,23(5):75-80.
[4] 姚婷,张晶,沈磊.基于灰色系统理论的股指预测研究[J].河南工程学院学报,2013,25(4):71-75.
[5] 李嵩松,惠晓峰.股票指数模糊随机预测与灰色预测实证比较研究[J].哈尔滨工业大学学报(社会科学版),2010,12(5):1-6.
[6] 汪同三,张涛.组合预测理论、方法及应用[M].北京:社会科学文献出版社,2008:56-70.
[7] 刘晓敏.基于BP神经网络的股指预测研究[D].大连:大连理工大学,2012.
[8] Gao Xuejun, Huang Tingwen, Wang Zhenyou, et al. Exploiting a modified gray model in back propagation neural networks for enhanced forecasting[J]. Cognitive Computation, 2014,6(3):331-337.
[9] 刘彩红.BP神经网络学习算法的研究[D].重庆:重庆师范大学,2008.
[10] 王俊清.BP神经网络及其改进[J].重庆工学院学报(自然科学版),2007,21(3):75-77.
[11] Ting Tiew-On, Rao M V C, Loo C K, et al. Solving unit commitment problem using hybrid particle swarm optimization[J]. Journal of Heuristics, 2003,35(6):76-81.
[12] Qu Guodong, Lou Zhanghua. Application of particle swarm algorithm in the optimal allocation of regional water resources based on immune evolutionary algorithm[J]. Journal of Shanghai Jiaotong University(Science), 2013,18(5):634-640.
[13] Tan Guanzheng, Bao Kun, Richard Maina Rimiru. A composite particle swarm algorithm for global optimization of multimodal functions[J]. Journal of Central South University, 2014,21(5):71-79.
[14] 葛继科,邱玉辉,吴春明,等.遗传算法研究综述[J].计算机应用研究,2008,25(10):2912-2915.
[15] Clerc M, Kennedy J. The particle swarm— explosion, stability, and convergence in a multidimensional complex space[J]. IEEE Transactions on Evolutionary Computation, 2002,6(1):58-73.
[16] 刘峡壁.人工智能导论[M].北京:国防工业出版社,2008:257-260.
[17] Shi Y, Eberhart R C. Fuzzy adaptive particle swarm optimization[J]. IEEE Congress on Evolutionary Computation, 2001,1:101-106.
[18] Eberhart R C, Shi Y. Tracking and optimizing dynamic systems with particle swarms[J]. IEEE Congresson on Evolutionary Computation, 2001,1:94-100.
[19] JIANG Tao, GONG Qiwei, QIU Ruofan, et al. Immiscible multicomponent lattice Boltzmann model for fluids with high relaxation time ratio[J]. Pramana, 2014,83(4):557-570.
[20] 杨汉桥,林晓辉.遗传算法与模拟退火法寻优能力综述[J].机械制造与自动化,2010,26(2):73-75.
相似文献/References:
[1]李生彪,彭建奎.基于Box-Jenkins方法的甘肃省GDP时间序列分析建模与预测[J].延边大学学报(自然科学版),2014,40(02):146.
LI Shengbiao,PENG Jiankui.Time series analysis and forecast model for annual GDP of Gansu Province based on Box-Jenkins methods[J].Journal of Yanbian University,2014,40(04):146.
备注/Memo
收稿日期: 2016-08-26
*通信作者: 李承浩(1971—),男,工学博士,讲师,研究方向为专利分析.