[1]唐晓伟.基于首次积分和向量场的二维Lotka-Volterra系统的稳定性[J].延边大学学报(自然科学版),2015,41(03):203-206.
 TANG Xiaowei.Stability of a two-dimensional Lotka-Volterra system with first integral and vector field[J].Journal of Yanbian University,2015,41(03):203-206.
点击复制

基于首次积分和向量场的二维Lotka-Volterra系统的稳定性

参考文献/References:

[1] Shair Ahmad, Alanc Lazer. Average conditions for global asymptotic stability in a nonautonomous Lotka-Volterra system[J]. Nonlinear Analysis, 2002,40(1):37-49.
[2] Shair Ahmad, Ivanka M Stamova. Asympotic stability of N-dimensional impulsive competitive system[J]. Nonlinear Analysis, 2007,8(2):654-663.
[3] Zhao Jingdong, Guo Xin, Han zhixia, et al. Average conditions for competitive system in a nonautonomous two dimensional Lotka-Volterra system[J]. Mathematical and Computer Modeling, 2013,57(5):1131-1138.
[4] Tang S Y, Xiao Y N, Chen L, et al. Integrated pest management models and the dynamical behavior[J]. Bulletin of Mathematical Biology, 2005,67(1):115-135.
[5] Tang S Y, Chen L. Modelling and analysis of integrated pest management strategy[J]. Discrete and Continuous Dynamics System, 2004,4(3):759-768.
[6] Albert C Luo J. A theory for n-dimensional nonlinear dynamics on continuous vector fields[J]. Communications in Nonlinear Science and Numerical Simulation, 2007,12(2):117-194.
[7] Albert C Luo J. Continuous Dynamical Systems[M]. Beijing: Higher Education Press, 2012.
[8] 宋新宇,郭红建,师向云.脉冲微分方程理论及其应用[M].北京:科学出版社,2011:208-209.

备注/Memo

收稿日期: 2015-05-13 作者简介: 唐晓伟(1983—),女,讲师,研究方向为微分方程稳定性.基金项目: 山东省青少年教育科学规划课题(15BSH278); 齐鲁师范学院校级青年教师项目(2014L1002)

更新日期/Last Update: 2015-07-30