[1]张博伦,赵亚慧,姜克鑫,等.基于知识增强的文本分类方法[J].延边大学学报(自然科学版),2024,(02):78-86.
 ZHANG Bolun,ZHAO Yahui,JIANG Kexin,et al.Text classification method based on knowledge enhancement[J].Journal of Yanbian University,2024,(02):78-86.
点击复制

基于知识增强的文本分类方法

参考文献/References:

[1] MIYATO T,DAI A M,GOODFELLOW I J. Adversarial Training Methods for Semi-Supervised Text Classification[C]//5th International Conference on Learning Representations. Toulon:OpenReview.net,2017:1-11.
[2] CHEN Y W,WANG J L,CAI Y Q,et al. A method for chinese text classification based on apparent semantics and latent aspects[J]. Journal of Ambient Intelligence and Humanized Computing,2015,6(4):473-480.
[3] 王海涛,宋文,王辉. 一种基于LSTM和CNN混合模型的文本分类方法[J]. 小型微型计算机系统,2020,41(6):1163-1168.
[4] 陈可嘉,刘惠. 基于改进BiGRU-CNN的中文文本分类方法[J]. 计算机工程,2022,48(5):59-66,73.
[5] 孙刘成,黄润才. 融合LSTM和注意力机制的新闻文本分类模型[J]. 传感器与微系统,2022,41(9):38-41.
[6] LIU W,ZHOU P,ZHAO Z,et al. K-BERT:Enabling language representation with knowledge graph[J]. Proceedings of the AAAI Conference on Artificial Intelligence,2020,34(3):2901-2908.
[7] LAN Z,CHEN M,GOODMAN S,et al. Albert:A lite bert for self-supervised learning of language representations[C]//8th International Conference on Learning Representations. Addis Ababa:OpenReview.net,2020:1-17.
[8] SUN Y,WANG S,LI Y,et al. ERNIE 2.0:A continual pre-training framework for language understanding [C]//Proceedings of the AAAI Conference on Artificial Intelligence. New York:Association for the Advancement of Artificial Intelligence,2020:8968-8975.
[9] GHOSAL D,HAZARIKA D,ROY A,et al. KinGDOM:Knowledge-guided domain adaptation for sentiment analysis[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Online:Association for Computational Linguistics,2020:3198–3210.
[10] SPEER R,CHIN J,HAVASI C. Conceptnet 5.5:An open multilingual graph of general knowledge[C]∥Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence. San Fraocisco:AAAI Press,2017: 4444-4451.
[11] 卢嘉荣,肖红,姜文超,等. 基于语料关联生成的知识增强型BERT[J]. 湖北大学学报(自然科学版),2022, 44(6):732-741.
[12] HONNIBAL M,MONTANI I. SpaCy 2:Natural language understanding with Bloom embeddings,convolutional neural networks and incremental parsing[J]. To appear,2017,7(1):411-420.
[13] LECUN Y,BOTTOU L,BENGIO Y,et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE,1998,86(11):2278–2324.
[14] ELMAN J L. Distributed representations,simple recurrent networks,and gram-matical structure[J]. Machine learning,1991,7(2/3):195-225.
[15] DEVLIN J,CHANG M W,LEE K,et al. Bert:Pre-training of deep bidirectional transformers for language understanding[C]// Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies,Volume 1 (Long and Short Papers). Minneapolis:Association for Computational Linguistics,2019:4171-4186.
[16] ZHANG X,FANG A. MPCNN with Knowledge Augmentation:A model for Chinese text classification[C]//International Conference on Intelligent Computing. Cham:Springer International Publishing,2022:141-149.
[17] 杨璐,何明祥. 基于门控机制和卷积神经网络的中文文本情感分析模型[J]. 计算机应用,2021,41(10):2842-2848.
[18] 姜克鑫,赵亚慧,崔荣一. 融合高低层语义信息的自然语言句子匹配方法[J]. 计算机应用研究,2022,39(4):1060-1063.
[19] XU P,MADOTTO A,WU C S,et al. Emo2Vec:Learning generalized emotion representation by multi-task training[C]//Proceedings of the 9th Workshop on Computational Approaches to Subjectivity,Sentiment and Social Media Analysis. Brussels:Association for Computational Linguistics,2018:292-298.
[20] IYYER M,MANJUNATHA V,BOYD-GRABER J,et al. Deep unordered composition rivals syntactic methods for text classification[C]//Proceedings of the 53rd Annual meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing. Beijing:Association for Computational Linguistics, 2015:1681-1691.
[21] SHEN D,WANG G,WANG W,et al. Baseline needs more love:On simple word-embedding-based models and associated pooling mechanisms[C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics. Melbourne:Association for Computational Linguistics,2018:440-450.

备注/Memo

投稿日期:2023-12-4
基金项目:国家语委“十三五”科研项目(YB135-76);延边大学外国语语言文学一流学科建设项目(18YLPY13)
第一作者:张博伦(2001—),女,硕士研究生,研究方向为自然语言处理.
通信作者:赵亚慧(1974—),女,硕士,教授,研究方向为智能计算、自然语言处理.

更新日期/Last Update: 2024-08-30