LIU Weilong,ZHANG Yingqiao.Nonreciprocal transmission in a three-level atom-optomechanical cavity coupled system[J].Journal of Yanbian University,2024,(02):23-30.
三能级原子–光力腔耦合非互易传输研究
- Title:
- Nonreciprocal transmission in a three-level atom-optomechanical cavity coupled system
- 文章编号:
- 1004-4353(2024)02-0023-08
- Keywords:
- optomechanical coupling; nonreciprocal transmission; whispering-gallery-mode resonator; isolation; input-output relations
- 分类号:
- O431
- 文献标志码:
- A
- 摘要:
- 文章利用三能级原子与光力腔耦合系统中的光力相互作用,以及光与原子的相互作用,提出一种可实现非互易传输的方案,同时分析了有效光力耦合强度和原子–腔模耦合强度对非互易传输和隔离度的影响.结果表明:通过适当调节有效光力耦合强度和原子–腔模耦合强度,可以调控光学光子的传输特性,且隔离度的峰值和线宽随着2种耦合强度的增加而增加.研究结果可为光学环形器、隔离器等非互易器件的研发提供参考.
- Abstract:
- A scheme for practical and nonreciprocal transmission is proposed using optomechanical and light-atom interaction in the coupling system of a three-level atom-optomechanical cavity,as well as the effects of the effective optomechanical coupling strength and atom-cavity-mode coupling strength on nonreciprocal transmission and isolation are analyzed. The results demonstrate that the transmission properties of optical photon can be modulated by properly adjusting the effective optomechanical coupling strength and atom-cavity-mode coupling strength. Moreover,the peak and line width of the isolation both increase with the increasing of the two coupling strengths. This scheme can provide useful references for the developments of nonreciprocal devices,such as,optical circulator,isolators,.
参考文献/References:
[1] XIA C C,YAN X B,TIAN X D,et al. Ideal optical isolator with a two-cavity optomechanical system[J]. Optics Communications,2019,451:197-201.
[2] JING Y W. Quantum spinning photonic circulator[J]. Scientific Reports,2022,12(1):5844.
[3] FLEURY R,SOUNAS D L,SIECK C F,et al. Sound isolation and giant linear nonreciprocity in a compact acoustic circulator [J]. Science,2014,343(6170):516-519.
[4] APLET L J,CARSON J W. A Faraday effect optical isolator[J]. Applied Optics,1964,3(4):544-545.
[5] HOGAN C L. The ferromagnetic faraday effect at microwave frequencies and its applications[J]. Reviews of Modern Physics,1953,25(1):253.
[6] JALAS D,PETROV A,EICH M,et al. What is–and what is not–an optical isolator[J]. Nature Photonics,2013,7(8):579-582.
[7] VAHALA K J. Optical microcavities[J]. Nature,2003,424(6950):839-846.
[8] FUJITA J,LEVY M,OSGOOD JR R M,et al. Waveguide optical isolator based on Mach–Zehnder interferometer[J]. Applied Physics Letters,2000,76(16):2158-2160.
[9] WU J H,ARTONI M,LA ROCCA G C. Non-Hermitian degeneracies and unidirectional reflectionless atomic lattices[J]. Physical Review Letters,2014,113(12):123004.
[10] LIANG C,LIU B,XU A N,et al. Collision-induced broadband optical nonreciprocity[J]. Physical Review Letters, 2020,125(12):123901.
[11] TANG L,TANG J,CHEN M,et al. Quantum squeezing induced optical nonreciprocity[J]. Physical Review Letters, 2022,128(8):083604.
[12] ESTEP N A,SOUNA D L,SORIC J,et al. Magnetic-free non-reciprocity and isolation based on parametrically modulated coupled-resonator loops [J]. Nature Physics,2014,10(12):923-927.
[13] HE B,YANG L,LIN Q,et al. Radiation pressure cooling as a quantum dynamical process[J]. Physical Review Letters,2017,118(23):233604.
[14] XIONG H,WU Y. Fundamentals and applications of optomechanically induced transparency[J]. Applied Physics Reviews,2018,5(3):031305.
[15] SUN F X,MAO D,DAI Y T,et al. Phase control of entanglement and quantum steering in a three-mode optomechanical system[J]. New Journal of Physics,2017,19(12):123039.
[16] AGARWAL G S,HUANG S. Nanomechanical inverse electromagnetically induced transparency and confinement of light in normal modes[J]. New Journal of Physics,2014,16(3):033023.
[17] SINGH S K,PARVE M,ABBAS T,et al. Tunable optical response and fast (slow) light in optomechanical system with phonon pump[J]. Physics Letters A,2022,442:128181.
[18] HAFEZI M,RABL P. Optomechanically induced non-reciprocity in microring resonators[J]. Optics Express,2012, 20(7):7672-7684.
[19] SHEN Z,ZHANG Y L,CHEN Y,et al. Experimental realization of optomechanically induced non-reciprocity[J]. Nature Photonics,2016,10(10):657-661.
[20] YAN C H,LI M,XU X B,et al. Unidirectional propagation of single photons realized by a scatterer coupled to whispering-gallery-mode microresonators[J]. Physical Review A,2023,107(3):033713.
[21] GENSE C,VITALI D,TOMBESI P. Emergence of atom-light-mirror entanglement inside an optical cavity [J]. Physical Review A,2008,77(5):050307.
[22] YAN Q,HOU B P,LAI D G. Local modulation of double optomechanically induced transparency and amplification[J]. Optics Express,2017,25(9):9697-9711.
[23] MAYKIN G B. The Sagnac effect:correct and incorrect explanations[J]. Physics Uspekhi,2000,43(12):1229.
[24] MAO X,YANG H,LONG D,et al. Experimental demonstration of mode-matching and Sagnac effect in a millimeter-scale wedged resonator gyroscope [J]. Photonics Research,2022,10(9):2115-2121.
[25] ZHANG H,HUANG R,ZHANG S D,et al. Breaking anti-PT symmetry by spinning a resonator[J]. Nano Letters, 2020,20(10):7594-7599.
相似文献/References:
[1]叶孝万,张英俏.回音壁共振器与三能级原子耦合系统的非互易透射[J].延边大学学报(自然科学版),2024,(02):39.
YE Xiaowan,ZHANG Yingqiao.Nonreciprocal transmission in system of the whispering-gallery-mode resonator coupled to a three-level atom[J].Journal of Yanbian University,2024,(02):39.
备注/Memo
收稿日期:2024-02-29
基金项目:国家自然科学基金(12064045)
第一作者:刘伟龙(1997—),男,硕士研究生,研究方向为量子光学.
通信作者:张英俏(1978—),女,副教授,研究方向为量子信息学 .