GE Yueying,GE Qi.The stability of solutions for a class of nonlinear mixed fractional differential equations[J].Journal of Yanbian University,2024,(01):1-12.
一类非线性混合分数阶微分方程系统解的稳定性
- Title:
- The stability of solutions for a class of nonlinear mixed fractional differential equations
- 文章编号:
- 1004-4353(2024)01-0001-12
- 关键词:
- 分数阶微分方程; Banach压缩映射原理; Dhage不动点定理; 稳定性
- Keywords:
- fractional differential equations; Banach contracting mapping principle; Dhage fixed point theorem; stability
- 分类号:
- O175.6
- 文献标志码:
- A
- 摘要:
- 研究了一类含Caputo型非线性混合分数阶微分方程耦合系统的边值问题.首先,利用Banach压缩映射原理讨论了该系统解的存在唯一性,并利用Dhage不动点定理研究了该系统解的存在性;然后,研究了该系统解的Ulam-Hyers稳定性、G-Ulam-Hyers稳定性和Ulam-Hyers-Rassia稳定性,并利用算例验证了所得结果的正确性.
- Abstract:
- The boundary value problem of a class of coupled systems with Caputo type nonlinear mixed fractional differential equations was studied. Firstly,the existence and uniqueness of system solutions were discussed by Banach compression mapping principle,and the existence of system solutions is studied by Dhage fixed point theorem. Then,the Ulam-Hyers stability,G-Ulam-Hyers stability and Ulam-Hyers-Rassia stability of the system solutions were investigated,and the correctness of the obtained results it was verified by numerical examples.
参考文献/References:
[1] 彭钟琪,李媛,薛益民.一类非线性分数阶微分方程耦合系统边值问题的两个正解[J].吉林大学学报(理学版), 2020,58(4):775-781.
[2] 薛益民,彭钟琪.一类非线性分数阶微分方程耦合系统正解的存在性[J].华南师范大学学报(自然科学版),2020, 52(2):102-106.
[3] 薛益民,戴振祥.一类非线性Riemann-Liouville分数阶微分方程耦合系统的正解[J].徐州工程学院学报(自然科学版),2019,34(3):64-68.
[4] MEDVE? M,POSP??IL M,?KRIPKOV? L. On exponential stability of nonlinear fractional multi delay integro-differential equations defined by pairwise permutable matrices[J]. Applied Mathematics and Computation ,2014,227:456-468.
[5] M. CAPUTO,Linear Models of dissipation whose Q is almost frequency independent:II [J].Geophysical Journal International,1966,13(5):529-539.
[6] 薛益民,苏有慧,刘洁,等.一类分数阶微分方程耦合系统边值问题解的存在性[J],徐州工程学院学报(自然科学版),2018,33(1):41-47.
[7] Samina,SHAH K,KHAM R A,Stablity theory to a coupled system of nonline fractional hybrid differential equations, Indian Journal of Pure and Applied Mathematics,2020,51(2):669-687.
[8] ZADA A,SHAH O,SHAH R,Hyers-Ulam stability of non-autonomous systems in terms of bound edness of Cauchy problems,Applied Mathematics and Computation ,2015,271:512-518.
[9] 张海燕,姚慧子.一类耦合交错的Hadamard型分数阶微分系统边值问题[J].宿州学院学报,2022,37(12):6-9.
[10] 杨海鹏.Banach压缩映射原理的应用[J].湖南工程学院学报(自然科学版),2018,28(1):53-56.
相似文献/References:
[1].延边大学学报(自然科学版)2012年第38卷总目次[J].延边大学学报(自然科学版),2012,38(04):326.
备注/Memo
投稿日期:2023-10-09
基金项目:吉林省教育厅科学技术研究项目(JJKH2022527KJ);吉林省科技厅项目(2023010129JC)第一作者:葛月英(1999— )女,硕士研究生,研究方向为常微分方程理论及其应用.
通信作者:葛琦(1975— )女,硕士,教授,研究方向为常微分方程理论及其应用.