ZHANG Ao,LI Junda,YUE Jincheng,et al.The phase transformation and electronic properties of CoSb3 under high pressure[J].Journal of Yanbian University,2022,(04):298-302.
高压下CoSb3的结构相变及其电子性质
- Title:
- The phase transformation and electronic properties of CoSb3 under high pressure
- 文章编号:
- 1004-4353(2022)04-0298-05
- Keywords:
- first - principle; CoSb3; high pressure; crystal structure; band structure
- 分类号:
- O521.2
- 文献标志码:
- A
- 摘要:
- 基于第一性原理计算研究了CoSb3在0~100 GPa范围内的相变行为.研究表明:当压强为25.3 GPa时, CoSb3的结构由Im - 3相(常压下)转变到P - 1相; 当压强为32.8 GPa时, CoSb3的结构由P - 1相转变为I - 42m相.计算CoSb3晶体结构的声子显示, Im - 3相、 P - 1相和I - 42m相在各自的压强范围内其动力学均具有稳定性.计算CoSb3的能带结构结果显示, Im - 3相在Γ对称点的带隙为0.224 eV, P - 1相、 I - 42m相在费米表面附近其导带和价带重叠,且均为金属相.计算CoSb3晶体结构的电子局域函数显示,在3个相的结构中Co原子和Sb原子之间均存在极性共价键.计算CoSb3晶体结构的Bader电荷转移显示, Co原子是受主, Sb原子是施主,即电荷从Sb原子向Co原子转移.
- Abstract:
- Based on the first - principles calculations, the phase transition behavior of CoSb3 at pressures ranging from 0 GPa to 100 GPa is studied.The reaserch shows that, at the pressure of 25.3 GPa, the crystal structure of CoSb3 changes from Im - 3 phase to P - 1 phase.When the pressureis 32.8 GPa, the phase of the crystal structure changes to I - 42m phase.Phonon calculations show that the Im - 3 phase, the P - 1 phase and the I - 42m phase are dynamically stable at their respective pressures.The results of band structure calculation show that the bandgap of CoSb3with space group Im - 3 at Γ symmetric points is calculated to be 0.224 eV at ambient pressure, the conduction band and valence band of the P - 1 phase and the I - 42m phase overlap near the Fermi surface, and both of them are metallic phases.The calculation of the electronlocalization function of crystal structure shows that there are polar covalent bonds between Co and Sb atoms in all three phase structures.The calculation of Bader charge transfer in crystal structure shows that Co atom is acceptor, Sb atom is donor, so charge transfer from Sb atom to Co atom.
参考文献/References:
[1] SINGHD J, PICJETT W E.Skutterudite antimonides: Quasilinear bands and unusual transport[J].Physical Review B, 1994,50(15):11235.
[2] CAILLAT T, BORSHCHEVSKY A, FLEURIAL J P.Properties of single crystalline semiconducting CoSb3[J].Journal of Applied Physics, 1996,80(8):4442 - 4449.
[3] LI J L, DUAN B, YANG H J, et al.Thermoelectric properties of electronegatively filled SyCo4 -xNixSb12 skutterudites[J].Journal of Materials Chemistry C, 2019,7(26):8079 - 8085.
[4] WANG H T, DUAN B, BAI G H, et al.Beneficial effect of S - filling on thermoelectric properties of SxSb12 skutterudites[J].Journal of Materials Chemistry C, 2019,7(26):8079 - 8085.
[4] WANG H T, DUAN B, BAI G H, et al.Beneficial effect of S - filling on thermoelectric properties of Sub>Co4Sb11.2Te0.8 skutterudite[J].Journal of Electronic Materials, 2018,47(6):3061 - 3066.
[5] KHAN A U, KOBAYASHI K, TANG D M, et al.Nano - micro - porous skutterudites with 100% enhancement in ZT for high performance thermoelectricity[J].Nano Energy, 2017,31:152 - 159.
[6] CHEN C, ZHANG L, LI J H, et al.Enhanced thermoelectric performance of lanthanum filled CoSb3 synthesized under high pressure[J].Journal of Alloys and Compounds, 2017,699:751 - 755.
[7] YANG X X, DAI Z L, ZHAO Y C, et al.Pressure induced excellent thermoelectric behavior in skutterudites CoSb3 and IrSb3[J].Physical Chemistry Chemical Physics, 2019,21(2):851 - 858.
[8] XIAO C Y, LI J L, DUAN B, et al.Microstructure and thermoelectric properties of chlorine - filled CoSb3 skutterudites synthesized by HPHT process[J].Ceramics International, 2022,48(3):4270 - 4275.
[9] WANG Y C, LV J, ZHU L, et al.Crystal structure prediction via particle - swarm optimization[J].Physical Review B, 2010,82(9):094116.
[10] KRESSE G, FURTHMULLER J.Efficient iterative schemes for ab initio total - energy calculations using a plane - wave basis set[J].Physical Review B, 1996,54(16):11169.
[11] CLARK S J, SEGALL M D, PICKARD C J, et al.First principles methods using CASTEP[J].Zeitschrift für Kristallographie - Crystalline Materials, 2005,220(5/6):567 - 570.
[12] PERDEW J P, BURKE K, ERNZERHOF M.Generalized gradient approximation made simple[J].Physical Review Letters, 1996,77(18):3865.
[13] CHADI D J.Special points for Brillouin - zone integrations[J].Physical Review B, 1977,16(4):1746.
[14] BORN M, HUANG K, LAX M.Dynamical theory of crystal lattices[J].American Journal of Physics, 1955,23(7):474.
[15] MOMMA K, IZUMI F.VESTA3 for three - dimensional visualization of crystal, volumetric and morphology data[J].Journal of Applied Crystallography, 2011,44(6):1272 - 1276.
[16] WANG Y C, LV J, MA Y M, et al.Superconductivity of MgB2 under ultrahigh pressure: A first principles study[J].Physical Review B, 2009,80(9):092505.
[17] MIAO M S.Caesium in high oxidation states and as a p - block element[J].Nature Chemistry, 2013,5(10):846 - 852.
[18] ZHAO D G, TIAN C W, TANG S Q, et al.Fabrication of a CoSb3 - based thermoelectric module[J].Materials Science in Semiconductor Processing, 2010,13(3):221 - 224.
[19] BECKE A D, EDGECOMBE K E.A simple measure of electron localization in atomic and molecular systems[J].The Journal of Chemical Physics, 1990,92(9):5397 - 5403.
相似文献/References:
[1]蔡晴,刘欢欢,王玉兰,等.高压下Ca(BH4)2晶体结构相变的第一性原理研究[J].延边大学学报(自然科学版),2018,44(01):35.
CAI Qing,LIU Huanhuan,WANG Yulan,et al.High-pressure phase transitions in Calcuim Borohydride fromfirst-principles calculations[J].Journal of Yanbian University,2018,44(04):35.
[2]程宇衡,崔慢爱,刘思远,等.高压下BaN2晶体结构的物理性质[J].延边大学学报(自然科学版),2020,46(03):210.
CHENG Yuheng,CUI Manai,LIU Siyuan,et al.Physical properties of BaN2 crystal structure under high pressure[J].Journal of Yanbian University,2020,46(04):210.
备注/Memo
收稿日期: 2022-05-26
基金项目: 国家自然科学基金(11764043)
第一作者: 张奥(1997—),男,硕士研究生,研究方向为凝聚态物理.
通信作者: 刘艳辉(1971—),女,博士,教授,研究方向为凝聚态物理.