[1]徐博文,金小峰*.基于语音识别的朝鲜语语音检索方法[J].延边大学学报(自然科学版),2021,47(03):273-278.
 XU Bowen,JIN Xiaofeng*.Korean speech retrieval method based on speech recognition[J].Journal of Yanbian University,2021,47(03):273-278.
点击复制

基于语音识别的朝鲜语语音检索方法

参考文献/References:

[1] AKIBA T, NISHIZAKI H, NANJO H, et al.Overview of the NTCIR - 12 SpokenQuery&Doc - 2 task[C]//Proceedings of the 12th NTCIR Conference on Evaluation of Information Access Technologies.Tokyo: NII, 2016:167-179.
[2] BURGET L, CERNOCK J, FAPSO M, et al.Indexing and search methods for spoken document[J].Lect Notes Comput Sci, 2006,4188(1):351-358.
[3] 李伟.基于内容的汉语语音检索技术研究与系统实现[D].北京:清华大学,2011.
[4] 金惠琴.基于维吾尔语语音关键词检索的研究[D].乌鲁木齐:新疆大学,2013.
[5] LIU H, FAN T, WU P.Audio - visual keyword spotting for mandarin based on discriminative local spatial - temporal descriptors[C]//2014 22nd International Conference on Pattern Recognition.Stockholm: IEEE, 2014:785-790.
[6] 王朝松,韩纪庆,郑铁然.基于非均匀MCE准则的DNN关键词检测系统中声学模型的训练[J].智能计算机与应用, 2015,5(5):15-17.
[7] 李鹏,屈丹.采用词图相交融合的语音关键词检测方法[J].信号处理,2015(6):702-709.
[8] CHEN I F, NI C, LIM B P, et al.A keyword-aware language modeling approach to spoken keyword search[J].J Signal Process Syst, 2016,82(2):197-206.
[9] ZHUANG Y, CHANG X, QIAN Y, et al.Unrestricted vocabulary keyword spotting using LSTM - CTC[C]//Proceedings of 2016 Interspeech.San Francisco: ISCA, 2016:938-942.
[10] DHANANJAY R, AFSANEH A, HRVÉ B.Phonetic subspace features for improved query by example spoken term detection[J].Speech Commun, 2018,103:27-36.
[11] HUANG J, GHARBIEH W, SHIM H S, et al.Query - by - example keyword spotting system using multi - head attention and softtriple loss[C]//2021 IEEE International Conference on Acoustics, Speech and Signal Processing(ICASSP).Toronto: IEEE, 2021:6858-6862.
[12] KIM S, BAE S, WON C.Open - source toolkit for end - to - end Korean speech recognition[J].Software Impacts, 2021,7:100054.
[13] CHAN W, JAITLY N, LE Q, et al.Listen, attend and spell: A neural network for large vocabulary conversational speech recognition[C]//2016 IEEE International Conference on Acoustics, Speech and Signal Processing(ICASSP).Shanghai: IEEE, 2016:4960-4964.
[14] CHUNG J, GULCEHRE C, CHO K H, et al.Empirical evaluation of gated recurrent neural networks on sequence modeling[J].arXiv preprint arXiv:1412.3555v1, 2014.

备注/Memo

收稿日期: 2021-04-07
基金项目: 吉林省教育厅“十三五”科学技术项目(JJKH20191126KJ); 延边大学外国语言文学世界一流学科建设项目(18YLPY14)
*通信作者: 金小峰(1970—),男,硕士,教授,研究方向为语音信息处理、计算机视觉及机器人技术.

更新日期/Last Update: 2021-10-20