LYU Gang,MU Mingzhu,JIN Yuanfeng*,et al.The stability of solution for a class of Drygas function equations[J].Journal of Yanbian University,2021,47(02):116-119.
一类Drygas泛函方程解的稳定性
- Title:
- The stability of solution for a class of Drygas function equations
- 文章编号:
- 1004-4353(2021)02-0116-04
- 关键词:
- Drygas泛函方程; 稳定性; 群; Banach空间
- Keywords:
- Drygas functional equation; stability; group; Banach space
- 分类号:
- O177.2
- 文献标志码:
- A
- 摘要:
- 利用迭代法和泛函不等式研究了一类Drygas泛函方程f(xyz)+f(xyz-1)=2f(x)+2f(y)+f(z)+f(-z)解的稳定性问题,并证明了该方程的解具有存在唯一性.
- Abstract:
- Using the iterative method and functional inequality, the stability of solution of a class of Drygas functional equation is investigated f(xyz)+f(xyz-1)=2f(x)+2f(y)+f(z)+f(-z).The existence and uniqueness of solutions of Drygas functional equation are obtained.
参考文献/References:
[1] GILÁNYI A.Eine zur Parallelogrammgleichung äquivalente Ungleichung[J]. Aequationes Math, 2001,62(3):303-309.
[2] RATZ J. On inequalities associated with the Jordan -von Neumann functional equation[J]. Aequationes Math, 2003,66:191-200.
[3] FECHNER W. Stability of a functional inequalities associated with the Jordan -von Neumann functional equation[J]. Aequationes Math, 2006,71:149-161.
[4] GILANYI A. On a problem by K.Nikodem[J]. Math Inequal Appl, 2002,5(4):707-710.
[5] PARK C. Additive ρ -functional inequalities and equations[J]. J Math Inequal, 2015,9(1):17-26.
[6] PARK C. Additive ρ -functional inequalities in non -Archimedean normed spaces[J]. J Math Inequal, 2015,9(2):397-407.
[7] DRYGAS H. Quasi -inner products and their applications: Advances in Multivariate Statistical Analysis[M]. Dordrecht Holland: Springer Science+Business Media, 1987:13-30.
[8] EBANKS B R, KANNAPPAN P L, SAHOO P K. A common generaliztion of functional equations charactering normed and quasi -inner -product spaces[J]. Canad Math Bull, 1992,35(3):321-327.
[9] FAIZIEV V A, SAHOO P K. On the stability of Drygas functional equation on groups[J]. Banach J Math Anal, 2007,1(1):43-55.
[10] SIROUNI M, KABBAJ S. A fixed point approach to the hyperstability of Drygas functional equation in metric spaces[J]. J Math Comput Sci, 2014,4(4):705-715.
[11] SABOUR K H. A variant of Drygas' functional equation with an endomorphism[J]. Asia Mathematika, 2020,4(1):63-68.
[12] CHOI C, LEE B. Stability of mixed additive -quadratic and additive -Drygas functional equations[J]. Results Math, 2020,75:38.
[13] SUN W L, JIN Y, PARK C, et al. 3 -Variable double ρ-functional inequalities of Drygas[J]. J Math Inequal, 2019,13(4):1235-1244.
相似文献/References:
[1]刘东旭,司文艺,袁玉娇.一类单部件可修复系统的稳定性及可靠性分析[J].延边大学学报(自然科学版),2014,40(01):15.
LIU Dongxu,SI Wenyi,YUAN Yujiao.The exponential stability and reliability analysis of a kind of single-component repairable system[J].Journal of Yanbian University,2014,40(02):15.
[2]韩筱爽,方明.具有预警功能和可修复储备部件的人-机系统[J].延边大学学报(自然科学版),2014,40(02):142.
HAN Xiaoshuang,FANG Ming.A human-machine system with warning function and general failed system repair time distribution[J].Journal of Yanbian University,2014,40(02):142.
[3]唐晓伟.基于首次积分和向量场的二维Lotka-Volterra系统的稳定性[J].延边大学学报(自然科学版),2015,41(03):203.
TANG Xiaowei.Stability of a two-dimensional Lotka-Volterra system with first integral and vector field[J].Journal of Yanbian University,2015,41(02):203.
[4]余胜斌.一类离散非自治竞争系统的绝灭性和稳定性[J].延边大学学报(自然科学版),2015,41(04):279.
YU Shengbin.Extinction and stability in a class of discrete non-autonomous competition system[J].Journal of Yanbian University,2015,41(02):279.
[5]唐晓伟.具状态脉冲的单种群微分系统周期解的稳定性[J].延边大学学报(自然科学版),2016,42(02):99.
TANG Xiaowei.Stability of periodic solution for a single population differential system with state-dependent impulse[J].Journal of Yanbian University,2016,42(02):99.
[6]吴凡,侯成敏*.分数阶q -对称非自治系统的稳定性[J].延边大学学报(自然科学版),2016,42(03):188.
WU Fan,HOU Chengmin*.Stability of q -symmetric fractional non-autonomous systems[J].Journal of Yanbian University,2016,42(02):188.
[7]余胜斌.具毒素影响的连续型竞争系统的绝灭性和稳定性[J].延边大学学报(自然科学版),2016,42(03):196.
YU Shengbin.Extinction and stability in a continuous competitive system with the effect of toxic substances[J].Journal of Yanbian University,2016,42(02):196.
[8]李晓艳,谢建民.一类高阶有理差分方程的全局行为[J].延边大学学报(自然科学版),2016,42(04):302.
LI Xiaoyan,XIE Jianmin.Global behavior of a higher-order rational difference equation[J].Journal of Yanbian University,2016,42(02):302.
[9]庄科俊.一类含有避难所和扩散项的食物链模型的稳定性[J].延边大学学报(自然科学版),2016,42(04):306.
ZHUANG Kejun.Stability analysis of a food-chain model incorporating prey refuge and diffusive term[J].Journal of Yanbian University,2016,42(02):306.
[10]张志敏.一类非自治差分竞争系统的绝灭性和稳定性[J].延边大学学报(自然科学版),2017,43(02):104.
ZHANG Zhimin.Extinction and stability in a nonautonomous difference competitive system[J].Journal of Yanbian University,2017,43(02):104.
备注/Memo
收稿日期: 2021-03-17 基金项目: 国家自然科学基金(11761074); 广州工商学院基础研究项目(KA202032)
*通信作者: 金元峰(1976—),男,博士,教授,研究方向为泛函方程稳定性及其应用.