LIU Han,ZHANG Ao,LIU Siyuan,et al.Phase transition and properties of Mg3P2 crystal structure under high pressure[J].Journal of Yanbian University,2021,47(01):36-41.
高压下Mg3P2晶体结构的相变与物性研究
- Title:
- Phase transition and properties of Mg3P2 crystal structure under high pressure
- 文章编号:
- 1004-4353(2021)01-0036-06
- 分类号:
- O521.2
- 文献标志码:
- A
- 摘要:
- 基于第一性原理并结合卡利普索(CALYPSO)晶体结构预测方法,在压强为0~100 GPa的范围内,对Mg3P2晶体的结构、相变行为和物理性质进行了研究.研究结果显示:在常压下,空间群为Ia -3的立方结构的能量最低,结构最为稳定,且其结构与实验所得结构一致; 在压强为2.5 GPa时, Mg3P2发生结构相变,由立方的Ia -3 结构转变为空间群为P -3m1的单斜结构; 在压强为19.9 GPa时,晶体结构相变为空间群为C2/m的单斜结构; 在48.2 GPa时,晶体结构相变为空间群为Cmc 21的单斜结构.对晶体结构的声子色散关系进行分析显示,预测得出的4个结构在各自的布里渊区里均没有出现虚频,表明这4个结构均具有动力学稳定性.对晶体结构的电子性质进行计算显示,预测得出的Ia -3相、P -3m1相、C2/m相和Cmc21相中的导带和价带在费米面附近均未发生交叠,表明这4个结构均呈非金属性质.晶体结构的电子局域函数计算显示,在4个相结构中, Mg和P原子之间均存在极性共价键.对晶体结构的Bader电荷转移进行计算显示, P原子是受主, Mg原子是施主,电荷从Mg原子向P原子转移.
- Abstract:
- Based on the first principles and CALYPSO crystal structure prediction method, the structure, phase transition behavior and physical properties of Mg3P2 crystal were studied in the pressure range of 0~100 GPA.The results show that under normal pressure, the space group of Mg3P2 crystal is Ia-3 cubic structure, with the lowest energy and the most stable structure, which is consistent with the experimental structure; At the pressure of 2.5 GPa, the crystal structure of Mg3P2 changes into monoclinic structure with space group P -3m1. When the pressure is 19.9 GPa, the phase of the crystal structure changes to monoclinic structure with C2/m space group. At 48.2 GPa, the phase of the crystal structure changes to Cmc 21 phase. The phonon dispersion relation of crystal structures is analyzed and shown that the four phases have no imaginary frequency in their Brillouin zone. The four phases have dynamic stability. The electronic properties of crystal structures are calculated, and the results show that the conduction band and valence band in the predicted Ia -3 phase, P -3m1 phase, C2/m phase and Cmc 21 phase do not overlap near the Fermi surface, indicating that the structure is non -metallic. The electron localization function of crystal structures revealed that there is a polar covalent bond between Mg and P atoms in the Ia -3, P -3m1, C2/m and Cmc 21 phases. Bader charge transfer calculations show that the P atom is the acceptor, the Mg atom is the donor, and the charge is transferred from the Mg atom to the P atom.
参考文献/References:
[1] YANG K, SHI J, SU R, et al. Prediction of pressure -induced phase transformations in Mg3As2[J]. RSC Advances, 2019,9(59):34401-34405.
[2] KAJIKAWA T, KIMURA N, YOKOYAMA T. Thermoelectric properties of intermetallic compounds: Mg3Bi2 and Mg3Sb2 for medium temperature range thermoelectric elements[C]//22nd International Conference on Thermoelectrics. Montpellier: IEEE, 2003:305-308.
[3] TESHOME T, DATTA A. Topological phase transition in Sb2Mg3 assisted by strain[J]. ACS Omega, 2019,4(5):8701-8706.
[4] WOOLF H, BROWN I, BOWDEN M. Light metal hydrides -Potential hydrogen storage materials[J]. Current Applied Physics, 2008,8(3):459-462.
[5] JAIN I P, JAIN P, JAIN A. Novel hydrogen storage materials: a review of lightweight complex hydrides[J]. Journal of Alloys and Compounds, 2010,503(2):303-339.
[6] RECKEWEG O, MOLSTAD J C, DISALVO F J. Magnesium nitride chemistry[J]. Journal of Alloys and Compounds, 2001,315(1/2):134-142.
[7] PASZKOWICZ W, KNAPP M, DOMAGALA J Z, et al. Low -temperature thermal expansion of Mg3N2[J]. Journal of Alloys and Compounds, 2001,328(1/2):272-275.
[8] SONG L, ZHANG S, WU X, et al. Direct synthesis and growth mechanism of 3D dendritic Mg3P2 microstructures[J]. Materials Letters, 2013,92(1):1-3.
[9] XIA C, CUI J, CHEN Y. Modulation of band alignment and electron -phonon scattering in Mg3Sb2 via pressure[J]. ACS Applied Electronic Materials, 2020,2(9):2745-2749.
[10] SEDIGHI M, NIA B A, ZARRINGHALAM H. First principles investigation of magnesium antimonite semiconductor compound in two different phases under hydrostatic pressure[J]. Physica B: Condensed Matter, 2011,406(17):3149-3153.
[11] SUN X, LI X, YANG J. Achieving band convergence by tuning the bonding ionicity in n -type Mg3Sb2[J]. Journal of Computational Chemistry, 2019,40(18):1693-1700.
[12] ZHANG J, SONG L, IVERSEN B B. Probing efficient n -type lanthanide dopants for Mg3Sb2 thermoelectrics[J]. Advanced Science, 2020,7(24):2002867.
[13] LI J, ZHANG S, WANG B, et al. Designing high -performance n -type Mg3Sb2 -based thermoelectric materials through forming solid solutions and biaxial strain[J]. Journal of Materials Chemistry A, 2018,6(41):20454-20462.
[14] ZHANG J W, SONG L R, MADSEN G K H, et al. Designing high -performance layered thermoelectric materials through orbital engineering[J]. Nature Communications, 2016,7:10892.
[15] BALOUT H, BOULET B, RECORD M C. Effect of biaxial strain on electronic and thermoelectric properties of Mg2Si[J]. Journal of Electronic Materials, 2013,42:3458-3466.
[16] GUO S D. Biaxial strain tuned thermoelectric properties in monolayer PtSe2[J]. Journal of Materials Chemistry C, 2016,4(39):9366-9374.
[17] IMASATO K, FU C, PAN Y, et al. Metallic n -type Mg3Sb2 single crystals demonstrate the absence of ionizedimpurity scattering and enhanced thermoelectric performance[J]. Advanced Materials, 2020,32(16):1908218.
[18] RÖMER S R, DÖRFLER T, KROLL P. Group II element nitrides M3N2 under pressure: a comparative density functional study[J]. Physica Status Solidi B, 2009,246(7):1604-1613.
[19] WANG Y, LV J, ZHU L, et al. Crystal structure prediction via particle swarm optimization[J]. Physics, 2010,82(9):7174-7182.
[20] PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Physical Review Letters, 1996,77(18):3865-3868.
[21] MONKHOREST H J, PACK J D. Special points for Brillouin -zone integrations[J]. Physical Review B, 1976,16(4):1746-1747.
[22] THIRUMALAI D, HALL R W, BERNE B. A path integral Monte Carlo study of liquid neon and the quantum effective pair potential[J]. The Journal of Chemical Physics, 1984,81(6):2523-2527.
[23] BORN M, HUANGK K, LAX M. Dynamical theory of crystal lattices[J]. American Journal of Physics, 1954,39(2):113-127.
[24] LIU B B, HAO J, TANG X, et al. Pressure -induced phase transformations in Mg3P2 from first -principles calculations[J]. Journal of Alloys and Compounds, 2017,720(5):207-211.
[25] WANG Y C, LV J, MA Y M, et al. Superconductivity of MgB2 under ultrahigh pressure:a first-principles study[J]. Physical Review B, 2009,80(9):092505
[26] XU L F, ZHAO Z S, WANG L M, et al. Prediction of a three -dimensional conductive superhard material: diamond -like BC2[J]. The Journal of Physical Chemistry C, 2010,114(51):22688-22690.
[27] BADER R F. Atoms in molecules[J]. Accounts of Chemical Research, 1985,18(1):9-15.
[28] OGANOV A R, CHEN J, GATTI C, et al. Ionic high -pressure form of elemental boron[J]. Nature, 2009,460(7252):863-868.
相似文献/References:
[1]程宇衡,崔慢爱,刘思远,等.高压下BaN2晶体结构的物理性质[J].延边大学学报(自然科学版),2020,46(03):210.
CHENG Yuheng,CUI Manai,LIU Siyuan,et al.Physical properties of BaN2 crystal structure under high pressure[J].Journal of Yanbian University,2020,46(01):210.
备注/Memo
收稿日期: 2020-10-20
*通信作者: 刘艳辉(1971—),女,教授,研究方向为高压下计算材料科学.
基金项目: 国家自然科学基金(11764043); 吉林省科技厅自然科学基金面上项目(20180101226JC)