[1]刘涵,张奥,刘思远,等.高压下Mg3P2晶体结构的相变与物性研究[J].延边大学学报(自然科学版),2021,47(01):36-41.
 LIU Han,ZHANG Ao,LIU Siyuan,et al.Phase transition and properties of Mg3P2 crystal structure under high pressure[J].Journal of Yanbian University,2021,47(01):36-41.
点击复制

高压下Mg3P2晶体结构的相变与物性研究

参考文献/References:

[1] YANG K, SHI J, SU R, et al. Prediction of pressure -induced phase transformations in Mg3As2[J]. RSC Advances, 2019,9(59):34401-34405.
[2] KAJIKAWA T, KIMURA N, YOKOYAMA T. Thermoelectric properties of intermetallic compounds: Mg3Bi2 and Mg3Sb2 for medium temperature range thermoelectric elements[C]//22nd International Conference on Thermoelectrics. Montpellier: IEEE, 2003:305-308.
[3] TESHOME T, DATTA A. Topological phase transition in Sb2Mg3 assisted by strain[J]. ACS Omega, 2019,4(5):8701-8706.
[4] WOOLF H, BROWN I, BOWDEN M. Light metal hydrides -Potential hydrogen storage materials[J]. Current Applied Physics, 2008,8(3):459-462.
[5] JAIN I P, JAIN P, JAIN A. Novel hydrogen storage materials: a review of lightweight complex hydrides[J]. Journal of Alloys and Compounds, 2010,503(2):303-339.
[6] RECKEWEG O, MOLSTAD J C, DISALVO F J. Magnesium nitride chemistry[J]. Journal of Alloys and Compounds, 2001,315(1/2):134-142.
[7] PASZKOWICZ W, KNAPP M, DOMAGALA J Z, et al. Low -temperature thermal expansion of Mg3N2[J]. Journal of Alloys and Compounds, 2001,328(1/2):272-275.
[8] SONG L, ZHANG S, WU X, et al. Direct synthesis and growth mechanism of 3D dendritic Mg3P2 microstructures[J]. Materials Letters, 2013,92(1):1-3.
[9] XIA C, CUI J, CHEN Y. Modulation of band alignment and electron -phonon scattering in Mg3Sb2 via pressure[J]. ACS Applied Electronic Materials, 2020,2(9):2745-2749.
[10] SEDIGHI M, NIA B A, ZARRINGHALAM H. First principles investigation of magnesium antimonite semiconductor compound in two different phases under hydrostatic pressure[J]. Physica B: Condensed Matter, 2011,406(17):3149-3153.
[11] SUN X, LI X, YANG J. Achieving band convergence by tuning the bonding ionicity in n -type Mg3Sb2[J]. Journal of Computational Chemistry, 2019,40(18):1693-1700.
[12] ZHANG J, SONG L, IVERSEN B B. Probing efficient n -type lanthanide dopants for Mg3Sb2 thermoelectrics[J]. Advanced Science, 2020,7(24):2002867.
[13] LI J, ZHANG S, WANG B, et al. Designing high -performance n -type Mg3Sb2 -based thermoelectric materials through forming solid solutions and biaxial strain[J]. Journal of Materials Chemistry A, 2018,6(41):20454-20462.
[14] ZHANG J W, SONG L R, MADSEN G K H, et al. Designing high -performance layered thermoelectric materials through orbital engineering[J]. Nature Communications, 2016,7:10892.
[15] BALOUT H, BOULET B, RECORD M C. Effect of biaxial strain on electronic and thermoelectric properties of Mg2Si[J]. Journal of Electronic Materials, 2013,42:3458-3466.
[16] GUO S D. Biaxial strain tuned thermoelectric properties in monolayer PtSe2[J]. Journal of Materials Chemistry C, 2016,4(39):9366-9374.
[17] IMASATO K, FU C, PAN Y, et al. Metallic n -type Mg3Sb2 single crystals demonstrate the absence of ionizedimpurity scattering and enhanced thermoelectric performance[J]. Advanced Materials, 2020,32(16):1908218.
[18] RÖMER S R, DÖRFLER T, KROLL P. Group II element nitrides M3N2 under pressure: a comparative density functional study[J]. Physica Status Solidi B, 2009,246(7):1604-1613.
[19] WANG Y, LV J, ZHU L, et al. Crystal structure prediction via particle swarm optimization[J]. Physics, 2010,82(9):7174-7182.
[20] PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Physical Review Letters, 1996,77(18):3865-3868.
[21] MONKHOREST H J, PACK J D. Special points for Brillouin -zone integrations[J]. Physical Review B, 1976,16(4):1746-1747.
[22] THIRUMALAI D, HALL R W, BERNE B. A path integral Monte Carlo study of liquid neon and the quantum effective pair potential[J]. The Journal of Chemical Physics, 1984,81(6):2523-2527.
[23] BORN M, HUANGK K, LAX M. Dynamical theory of crystal lattices[J]. American Journal of Physics, 1954,39(2):113-127.
[24] LIU B B, HAO J, TANG X, et al. Pressure -induced phase transformations in Mg3P2 from first -principles calculations[J]. Journal of Alloys and Compounds, 2017,720(5):207-211.
[25] WANG Y C, LV J, MA Y M, et al. Superconductivity of MgB2 under ultrahigh pressure:a first-principles study[J]. Physical Review B, 2009,80(9):092505
[26] XU L F, ZHAO Z S, WANG L M, et al. Prediction of a three -dimensional conductive superhard material: diamond -like BC2[J]. The Journal of Physical Chemistry C, 2010,114(51):22688-22690.
[27] BADER R F. Atoms in molecules[J]. Accounts of Chemical Research, 1985,18(1):9-15.
[28] OGANOV A R, CHEN J, GATTI C, et al. Ionic high -pressure form of elemental boron[J]. Nature, 2009,460(7252):863-868.

相似文献/References:

[1]程宇衡,崔慢爱,刘思远,等.高压下BaN2晶体结构的物理性质[J].延边大学学报(自然科学版),2020,46(03):210.
 CHENG Yuheng,CUI Manai,LIU Siyuan,et al.Physical properties of BaN2 crystal structure under high pressure[J].Journal of Yanbian University,2020,46(01):210.

备注/Memo

收稿日期: 2020-10-20
*通信作者: 刘艳辉(1971—),女,教授,研究方向为高压下计算材料科学.
基金项目: 国家自然科学基金(11764043); 吉林省科技厅自然科学基金面上项目(20180101226JC)

更新日期/Last Update: 2021-04-20