YU Yang,GE Qi.Sufficient conditions for the existence of multiple positive solutions for a Caputo type fractional-order differential equation boundary value problems[J].Journal of Yanbian University,2023,(02):95-101.
一类Caputo型分数阶微分方程边值问题多重正解存在的充分条件
- Title:
- Sufficient conditions for the existence of multiple positive solutions for a Caputo type fractional-order differential equation boundary value problems
- Keywords:
- Caputo type fractional differential equation; Green function; Guo-Krasnosel??skii fixed point theorem; Leggett-Williams fixed point theorem; boundary value problem; multiple positive solutions
- 分类号:
- O175.8
- 文献标志码:
- A
- 摘要:
- 研究了一类非线性项带有分数阶导数的Caputo型分数阶微分方程的边值问题.首先,将方程转化为等价的积分方程;其次,通过计算得到了与该方程相应的格林函数,并且分析了所得的格林函数的性质;最后,利用格林函数的性质以及Guo-Krasnosel??skii不动点定理和Leggett-Williams不动点定理得到了该边值问题分别存在1个正解和3个正解的充分条件.
- Abstract:
- The boundary value problems of Caputo type fractional differential equations with nonlinear terms and fractional derivatives were studied.Firstly, the equation was transformed into an equivalent integral equation.Secondly, Green function corresponding to the equation was obtained through calculation, and the properties of the obtained Green function were analyzed.Finally, by using the properties of Green function and the Guo-Krasnosel??skii fixed point theorem and Leggett-Williams fixed point theorem, the sufficient conditions for the existence of one positive solution and three positive solutions for the boundary value problems were obtained.
参考文献/References:
[1] BOULARES H,ARDJOUNI A,LASKRI Y.Positive solutions for nonlinear fractional differential equations[J].Positivity,2017,21(3):1201-1212.
[2] BOUTERAA N,BENAICHA S,DJOURDEM H.Positive solutions for nonlinear fractional differential equation with nonlocal boundary conditions[J]. Universal Journal of Mathematics and Applications,2018,1(1):39-45.
[3] LIU Z H,LYU JY.Existence results for impulsive nonlinear fractional differential equations with nonlocal boundary conditions[J].Mathematica Slovaca,2016,65(6):1291-1308.
[4] 王枫,葛琦.一类非线性分数阶微分方程多重正解存在的充分条件[J].延边大学学报(自然科学版),2022,48(3):189-195.
[5] 宋景红.一类非线性分数阶微分方程边值问题正解的存在性[J].南开大学学报(自然科学版),2018,51(5):79-84.
[6] SUN Y,MIN Z.Positive solutions for a class of fractional differential equations with integral boundary conditions[J].Applied Mathematics Letters,2014,34(1):17-21.
[7] 黄燕萍,韦煜明.一类分数阶微分方程多点边值问题的多解性[J].广西师范大学学报(自然科学版),2018,36(3):41-49.
[8] 张潇峰,封汉颍.一类非线性分数阶微分方程耦合系统边值问题解的存在性[J].安徽工业大学学报(自然科学版),2017,34(2):193-199.
[9] CHENG C,FENG Z,SU Y.Positive solutions of fractional differential equations with derivative terms[J].Electronic Journal of Differential Equations,2012,2012(215):181-206.
[10] KILBAS A A A,SRIVASTAVA H M,TRUJILLO J J.Theory and Applications of Fractinal Differential Equations[M].Amasterdam:Elsevier,2006:69-78.
[11] 吴强,黄建华.分数阶微积分[J].北京:清华大学出版社,2016:28-35.
[12] BAI Z B,L? H S.Positive solution for boundary value problem of nonlinear differential equation[J].J Math Anal Appl,2005,311(2):495-505.
[13] KRASNOSEL??SKILLI M A.Positive solutions of operator equations[J].J Math Anal Appl,2006,314(2):423-435.
[14] 白占兵.分数阶微分方程边值问题理论及应用[M].北京:中国科学技术出版社,2013.
相似文献/References:
[1]郭彩霞,郭建敏,康淑瑰,等.带有分数阶边界条件的一类Caputo差分方程边值问题[J].延边大学学报(自然科学版),2013,39(03):188.
GUO Caixia,GUO Jianmin,KANG Shugui,et al.On a Caputo fractional boundary value problem for fractional boundary conditions[J].Journal of Yanbian University,2013,39(02):188.
[2]吕洪鹏,侯成敏*.带有积分边界条件的p -Laplacian分数阶微分方程边值问题正解的存在性[J].延边大学学报(自然科学版),2019,45(02):95.
LYU Hongpeng,HOU Chengmin*.Existence of positive solutions for fractional differential equationinvolving integral boundary conditions with p -Laplacian operator[J].Journal of Yanbian University,2019,45(02):95.
[3]闫雅雯,侯成敏*,孙明哲.无穷区间上有序分数阶q -差分方程边值问题正解的存在性[J].延边大学学报(自然科学版),2019,45(03):189.
YAN Yawen,HOU Chengmin*,SUN Mingzhe.Existence of positive solution for boundary value problems ofordered fractional q -differences equations on infinite intervals[J].Journal of Yanbian University,2019,45(02):189.
[4]甘亦苗,侯成敏*.一类Hadamard型分数阶微分方程解的存在唯一性[J].延边大学学报(自然科学版),2021,47(02):95.
GAN Yimiao,HOU Chengmin*.The existence and uniqueness of the solutions of a class of Hadamard type fractional differential equations[J].Journal of Yanbian University,2021,47(02):95.
[5]王枫,葛琦.一类非线性分数阶微分方程多重正解存在的充分条件[J].延边大学学报(自然科学版),2022,(03):189.
WANG Feng,GE Qi.Sufficient conditions for the existence of multiple positive solutions of a class of nonlinear fractional differential equations[J].Journal of Yanbian University,2022,(02):189.
[6]葛月英,葛琦.一类Hadamard型分数阶微分方程边值问题的Lyapunov不等式及其解的存在性[J].延边大学学报(自然科学版),2023,(03):189.
GE Yueying,GE Qi.Existence of Lyapunov inequality and its solutions for a class of boundary value problems for fractional differential equations of Hardmard type[J].Journal of Yanbian University,2023,(02):189.
备注/Memo
收稿日期: 2023 04 04
基金项目: 吉林省教育厅科学技术研究项目(JJKH2022527KJ)
第一作者: 于洋(1999—),女,硕士研究生,研究方向为常微分方程.
通信作者: 葛琦(1975—),女,教授,研究方向为常微分方程.