[1]于洋,葛琦.一类Caputo型分数阶微分方程边值问题多重正解存在的充分条件[J].延边大学学报(自然科学版),2023,(02):95-101.
 YU Yang,GE Qi.Sufficient conditions for the existence of multiple positive solutions for a Caputo type fractional-order differential equation boundary value problems[J].Journal of Yanbian University,2023,(02):95-101.
点击复制

一类Caputo型分数阶微分方程边值问题多重正解存在的充分条件

参考文献/References:

[1] BOULARES H,ARDJOUNI A,LASKRI Y.Positive solutions for nonlinear fractional differential equations[J].Positivity,2017,21(3):1201-1212.
[2] BOUTERAA N,BENAICHA S,DJOURDEM H.Positive solutions for nonlinear fractional differential equation with nonlocal boundary conditions[J]. Universal Journal of Mathematics and Applications,2018,1(1):39-45.
[3] LIU Z H,LYU JY.Existence results for impulsive nonlinear fractional differential equations with nonlocal boundary conditions[J].Mathematica Slovaca,2016,65(6):1291-1308.
[4] 王枫,葛琦.一类非线性分数阶微分方程多重正解存在的充分条件[J].延边大学学报(自然科学版),2022,48(3):189-195.
[5] 宋景红.一类非线性分数阶微分方程边值问题正解的存在性[J].南开大学学报(自然科学版),2018,51(5):79-84.
[6] SUN Y,MIN Z.Positive solutions for a class of fractional differential equations with integral boundary conditions[J].Applied Mathematics Letters,2014,34(1):17-21.
[7] 黄燕萍,韦煜明.一类分数阶微分方程多点边值问题的多解性[J].广西师范大学学报(自然科学版),2018,36(3):41-49.
[8] 张潇峰,封汉颍.一类非线性分数阶微分方程耦合系统边值问题解的存在性[J].安徽工业大学学报(自然科学版),2017,34(2):193-199.
[9] CHENG C,FENG Z,SU Y.Positive solutions of fractional differential equations with derivative terms[J].Electronic Journal of Differential Equations,2012,2012(215):181-206.
[10] KILBAS A A A,SRIVASTAVA H M,TRUJILLO J J.Theory and Applications of Fractinal Differential Equations[M].Amasterdam:Elsevier,2006:69-78.
[11] 吴强,黄建华.分数阶微积分[J].北京:清华大学出版社,2016:28-35.
[12] BAI Z B,L? H S.Positive solution for boundary value problem of nonlinear differential equation[J].J Math Anal Appl,2005,311(2):495-505.
[13] KRASNOSEL??SKILLI M A.Positive solutions of operator equations[J].J Math Anal Appl,2006,314(2):423-435.
[14] 白占兵.分数阶微分方程边值问题理论及应用[M].北京:中国科学技术出版社,2013.

相似文献/References:

[1]郭彩霞,郭建敏,康淑瑰,等.带有分数阶边界条件的一类Caputo差分方程边值问题[J].延边大学学报(自然科学版),2013,39(03):188.
 GUO Caixia,GUO Jianmin,KANG Shugui,et al.On a Caputo fractional boundary value problem for fractional boundary conditions[J].Journal of Yanbian University,2013,39(02):188.
[2]吕洪鹏,侯成敏*.带有积分边界条件的p -Laplacian分数阶微分方程边值问题正解的存在性[J].延边大学学报(自然科学版),2019,45(02):95.
 LYU Hongpeng,HOU Chengmin*.Existence of positive solutions for fractional differential equationinvolving integral boundary conditions with p -Laplacian operator[J].Journal of Yanbian University,2019,45(02):95.
[3]闫雅雯,侯成敏*,孙明哲.无穷区间上有序分数阶q -差分方程边值问题正解的存在性[J].延边大学学报(自然科学版),2019,45(03):189.
 YAN Yawen,HOU Chengmin*,SUN Mingzhe.Existence of positive solution for boundary value problems ofordered fractional q -differences equations on infinite intervals[J].Journal of Yanbian University,2019,45(02):189.
[4]甘亦苗,侯成敏*.一类Hadamard型分数阶微分方程解的存在唯一性[J].延边大学学报(自然科学版),2021,47(02):95.
 GAN Yimiao,HOU Chengmin*.The existence and uniqueness of the solutions of a class of Hadamard type fractional differential equations[J].Journal of Yanbian University,2021,47(02):95.
[5]王枫,葛琦.一类非线性分数阶微分方程多重正解存在的充分条件[J].延边大学学报(自然科学版),2022,(03):189.
 WANG Feng,GE Qi.Sufficient conditions for the existence of multiple positive solutions of a class of nonlinear fractional differential equations[J].Journal of Yanbian University,2022,(02):189.
[6]葛月英,葛琦.一类Hadamard型分数阶微分方程边值问题的Lyapunov不等式及其解的存在性[J].延边大学学报(自然科学版),2023,(03):189.
 GE Yueying,GE Qi.Existence of Lyapunov inequality and its solutions for a class of boundary value problems for fractional differential equations of Hardmard type[J].Journal of Yanbian University,2023,(02):189.

备注/Memo

收稿日期: 2023 04 04
基金项目: 吉林省教育厅科学技术研究项目(JJKH2022527KJ)
第一作者: 于洋(1999—),女,硕士研究生,研究方向为常微分方程.
通信作者: 葛琦(1975—),女,教授,研究方向为常微分方程.

更新日期/Last Update: 2023-06-20