LIU Jiangang,DU Fengjiao.Design of grinding fixture for thin wall parts of liquid plastics[J].Journal of Yanbian University,2020,46(03):265-269.
一种液性塑料的薄壁类零件磨削夹具的设计
- Title:
- Design of grinding fixture for thin wall parts of liquid plastics
- 文章编号:
- 1004-4353(2020)03-0265-05
- Keywords:
- fixture; liquid plastic; thin -wall sleeve; sleeve valve core; finite element analysis; reliability
- 分类号:
- TG75
- 文献标志码:
- A
- 摘要:
- 为提高薄壁类零件外圆磨削的加工精度,利用液性塑料设计了一种薄壁类零件磨削夹具.对该液性塑料的外圆磨削夹具进行理论分析表明,薄壁套对薄壁类零件产生的径向膨胀应力(25.22 MPa)能够克服薄壁类零件外圆磨削所产生的摩擦力(200 N).利用Workbench软件对薄壁套的变形进行有限元分析表明,密封腔液性塑料的压强达到7.44 MPa时,液性塑料对薄壁套的外表面可产生101.78 MPa的径向膨胀应力.通过对套阀阀芯进行仿真和对螺塞拧紧力矩进行理论计算表明,拧紧螺塞所需的拧紧力矩为2.58 N·m,套阀阀芯的最大变形为0.002 1 mm,最大应力为25.22 MPa,最大应变为0.000 13 mm.对夹具进行可靠性分析表明,其应力可靠度为100%.以上结果表明,本文设计的基于液性塑料薄壁类零件磨削夹具安全可靠,可用于磨削加工薄壁类零件.
- Abstract:
- In order to improve the machining accuracy of cylindrical grinding of thin -walled parts, a kind of grinding fixture for thin -walled parts was designed using liquid plastic. The theoretical analysis of the fixture shows that the radial expansion stress(25.22 MPa)produced by the thin -walled sleeve on the thin -walled parts can overcome the friction force(200 N)produced by the cylindrical grinding of the thin -walled parts. The finite element analysis of the deformation of the thin -walled sleeve by workbench software shows that when the pressure of the liquid plastic in the sealing chamber reaches 7.44 MPa, the radial expansion stress of 101.78 MPa can be produced by the liquid plastic on the outer surface of the thin -walled sleeve. Through the simulation of the valve core and the theoretical calculation of the screw plug tightening torque, the results show that the required tightening torque is 2.58 N·m, the maximum deformation of the valve core is 0.002 1 mm, the maximum stress is 25.22 MPa, and the maximum strain is 0.000 13 mm. The reliability analysis of the fixture shows that the stress reliability is 100%. The results show that the fixture designed in this paper is safe and reliable, and can be used for grinding thin -walled parts.
参考文献/References:
[1] 黄华宾.薄壁壳体液压自制工装的设计[J].金属加工(冷加工),2018,12(12):48-50.
[2] 张珂,牛长青,刘思源,等.薄壁异形件自动化夹具的仿真分析及优化[J].机械设计与制造,2020(3):214-219.
[3] 杜风娇,刘建刚.薄壁套筒类零件磨削夹具的设计及其可靠性分析[J].延边大学学报(自然科学版),2019,45(3):268-271.
[4] 杨志源,代巍,刘国斌,等.多自由度定位装置及系统[J].装备制造技术,2017(4):212-214.
[5] 宋树林,孙贵青.用于某转子同心度测量的液性塑料夹具设计[J].现代制造技术与装备,2020(5):16-19.
[6] 李文玉.液性塑料夹具中的薄壁套筒的力学分析[J].现代制造技术与装备,2010(4):54-55.
[7] 李传才,潘玉田,李会营,等.液性塑料夹具[J].机械制造与自动化,2011,40(4):27-28.
[8] 陈树峰,刘浩.液性塑料夹具中的薄壁套筒精确设计与分析[J].煤矿机械,2003(9):11-13.
[9] 陈向荣,窦鲁豫.液性塑料夹具在孔精确定位中的应用[J].机床与液压,2010,38(2):112.
[10] 范凤仙.加工薄壁零件的弹性胀紧夹具[J].制造·材料,1999,434(38):61-62.
[11] 林水福,佘公藩.螺栓拧紧力矩--轴向力关系研究[J].航空标准化与质量,1991,12(6):16-19.
[12] 孙靖民.现代机械设计方法[M].哈尔滨:哈尔滨工业大学出版社,2011:51-52.
[13] 温秉全.金属材料手册[M].北京:电子工业出版社,2009:8-81.
[14] 芮延年,傅戈雁.现代可靠性设计[M].北京:国防工业出版社,2007:254.
相似文献/References:
[1]杜风娇,刘建刚.薄壁套筒类零件磨削夹具的设计及其可靠性分析[J].延边大学学报(自然科学版),2019,45(03):268.
DU Fengjiao,LIU Jiangang.Design and feasibility analysis of grinding fixture for thin-walled parts[J].Journal of Yanbian University,2019,45(03):268.
备注/Memo
收稿日期: 2020-06-30 作者简介: 刘建刚(1987—),男,工程师,研究方向为机械传动、农业机械、夹具设计.
基金项目: 福建省中青年教师教育科研项目(JAT190778); 武夷学院校级教改项目(KC202021)