SUN Ying,JIN Dongri*.Synthesis of sweet potato fluorescent carbon dots andits sensitive detection of Fe3+[J].Journal of Yanbian University,2019,45(04):303-307.
甘薯荧光碳点的合成及其对Fe3+的灵敏检测
- Title:
- Synthesis of sweet potato fluorescent carbon dots and its sensitive detection of Fe3+
- 文章编号:
- 1004-4353(2019)04-0303-05
- 分类号:
- O613.71; O655
- 文献标志码:
- A
- 摘要:
- 以甘薯为碳源,采用水热法制备了蓝色荧光水溶性碳点(CDs),并通过傅里叶变换红外光谱、紫外可见光谱和荧光光谱法对该碳点的性质进行了研究.研究结果显示,碳点溶液具有良好的稳定性,CDs表面存在羟基、羧基等亲水性官能团.碳点的最大激发波长和发射波长分别为390 nm和486 nm,且碳点具有典型的激发波长依赖性.考察pH对CDs荧光强度的影响显示,CDs荧光强度在pH为2.0~6.8范围内无明显变化.基于Fe3+能够选择性地猝灭CDs荧光的特性,建立了一种利用CDs检测实际水样品中Fe3+的方法.该方法的线性范围为10~1 670 μmol/L,相关系数(R2)为0.994 4,检出限为5.64 μmol/L; 在加标样品中, Fe3+的加标回收率为94%~104%, RSD <2.4%.
- Abstract:
- Blue fluorescent water -soluble carbon dots(CDs)were prepared by hydrothermal method using sweet potato as carbon source. The properties of the carbon dots were studied by Fourier transform infrared spectroscopy, ultraviolet visible spectroscopy and fluorescence spectroscopy. The results show that the carbon dots solution has good stability, and hydrophilic functional groups such as hydroxyl groups and carboxyl groups existed on the surface of CDs. The maximum excitation and emission wavelengths of the carbon dots are 390 nm and 486 nm, respectively, and the carbon dots have a typical excitation wavelength dependence. The effect of pH on the fluorescence intensity of CDs was observed. The fluorescence intensity of CDs showed no significant change in the range of pH 2.0 - 6.8. Based on the ability of Fe3+ to selectively quench the fluorescence of CDs, a method for detecting Fe3+ in actual water samples using CDs was established. The linear range of the method is 10 - 1 670 μmol/L, the correlation coefficient(R2)is 0.994 4, and the detection limit is 5.64 μmol/L. In the spiked samples, the recoveries of Fe3+ are 94% - 104%, RSD <2.4%.
参考文献/References:
[1] GUO Y M, ZHANG L F, ZHANG S S, et al. Fluorescent carbon nanoparticles for the fluorescent detection of metal ions[J]. Biosensors and Bioelectronics, 2015,63:61-71.
[2] OHASHI A, ITO H, KANAI C, et al. Cloud point extraction of iron(III)and vanadium(V)using 8-quinolinol derivatives and Triton X -100 and determination of 10-7 mol dm-3 level iron(III)in riverine water reference by a graphite furnace atomic absorption spectroscopy[J]. Talanta, 2005,65(2):525-530.
[3] MORENO I M, GONZÁLEZ -WELLER D, GUTIERREZ V, et al. Determination of Al, Ba, Ca, Cu, Fe, K, Mg, Mn, Na, Sr and Zn in red wine samples by inductively coupled plasma optical emission spectroscopy: Evaluation of preliminary sample treatments[J]. Microchemical Journal, 2008,88(1):56-61.
[4] 王勇,张远琴,但娟,等.EDTA络合滴定法测量高炉渣中铁(Ⅲ)和铁(Ⅱ)[J].冶金分析,2017,37(8):49-53.
[5] ATCHUDAN R, EDISON T, ASEER K,et al. Hydrothermal conversion of Magnolia liliiflora into nitrogen-doped carbon dots as an effective turn-off fluorescence sensing, multi-colour cell imaging and fluorescent ink[J]. Colloids and Surfaces B: Biointerfaces, 2018,169:321-328.
[6] ZHOU J, BOOKER C, LI R, et al. An electrochemical avenue to blue luminescent nanocrystals from multiwalled carbon nanotubes(MWCNTs)[J]. J Amer Chem Soc, 2007,129(4):744-745.
[7] SUN Y P, ZHOU B, LIN Y, et al. Quantum-sized carbon dots for bright and colorful photoluminescence[J]. J Amer Chem Soc, 2006,128(24):7756-7757.
[8] LI X, WANG H, SHIMIZU Y, et al. Preparation of carbon quantum dots with tunable photoluminescence by rapid laser passivation in ordinary organic solvents[J]. Chem Commun, 2011,47(3):932-934.
[9] QU K, WANG J, REN J, et al. Carbon dots prepared by hydrothermal treatment of dopamine as an effective fluorescent sensing platform for the label-free detection of iron(III)ions and dopamine[J]. Chemistry -A European Journal, 2013,19(22):7243-7249.
[10] LIU R, WU D, FENG X, et al. Bottom-up fabrication of photoluminescent graphene quantum dots with uniform morphology[J]. J Amer Chem Soc, 2011,133(39):15221-15223.
[11] CHITRE S A, LOBO G A M, RATHOD S M, et al. Bromide-sulfur interchange: Ion chromatographic determination of total reduced thiol levels in plasma[J]. Journal of Chromatography B, 2008,864(1/2):173-177.
[12] PAN L, SUN S, ZHANG A, et al.Truly fluorescent excitation-dependent carbon dots and their applications in multicolor cellular imaging and multidimensional sensing[J]. Advanced Materials, 2015,27(47):7782-7787.
[13] 孙英祥,丁晓莹,何志伟,等.甘蔗水热法一步合成水溶性荧光碳点[J].化工新型材料,2015,43(2):187-190.
[14] 廖秀芬,曾秋莲,易忠胜,等.荧光碳点的合成及其在绿麦隆检测中的应用研究[J].分析测试学报,2018,37(9):1040-1045.
[15] 刘红英,黄成,戴大响,等.一步法水热合成枸杞荧光碳点及对Fe3+的灵敏检测[J].分析化学,2018,46(10):1610-1617.
[16] ASLANDS A M, BALCI N, ARIK M, et al. Liquid nitrogen -assisted synthesis of fluorescent carbon dots from blueberry and their performance in Fe3+ detection[J]. Appl Surf Sci, 2015,356:747-752.
备注/Memo
收稿日期: 2019-06-19 基金项目: 国家自然科学基金资助项目(21565027)
*通信作者: 金东日(1965—),男,博士,教授,研究方向为药物分析研究.