[1]李隘优.基于混合蒙特卡罗算法的网络隐式节点监测方法研究[J].延边大学学报(自然科学版),2019,45(01):45.
LI Yiyou.Research on network implicit node monitoring method basedon hybrid Monte Carlo algorithm[J].Journal of Yanbian University,2019,45(01):45.
点击复制
LI Yiyou.Research on network implicit node monitoring method basedon hybrid Monte Carlo algorithm[J].Journal of Yanbian University,2019,45(01):45.
基于混合蒙特卡罗算法的网络隐式节点监测方法研究
《延边大学学报(自然科学版)》[ISSN:1004-4353/CN:22-1191/N]
卷:
第45卷
期数:
2019年01期
页码:
45
栏目:
基础科学研究
出版日期:
2019-02-20
- Title:
- Research on network implicit node monitoring method based on hybrid Monte Carlo algorithm
- 文章编号:
- 1004-4353(2019)01-0045-04
- 分类号:
- TN919
- 文献标志码:
- A
- 摘要:
- 为了提高动态分簇传感网络的节点转发能力,提出了一种基于混合蒙特卡罗算法的网络隐式节点监测方法.首先,采用分布式均衡控制方法进行网络节点优化设计,构建动态分簇传感网络的输出信道模型.其次,利用自适应链路转发协议进行网络的路由探测设计,构建动态分簇传感网络的隐式节点路由均衡控制模型,提取隐式节点输出信息的关联特征量.最后,利用混合蒙特卡罗算法进行特征检测和信息提取,根据网络隐式节点的特征规律性分布对网络隐式节点信息进行监测.仿真结果表明,本文方法对网络隐式节点具有较好的监测效果,对网络隐式节点监测的最高丢包率仅为0.05,显著低于蚁群算法(0.29)与PEAS算法(0.48).
- Abstract:
- In order to improve the node forwarding ability of dynamic clustering sensor network, a hybrid implicit node monitoring method based on hybrid Monte Carlo algorithm is proposed. Firstly, the distributed equalization control method is used to optimize the network nodes, and the output channel model of the dynamic clustering sensor network is constructed. Secondly, the adaptive link forwarding protocol is used to design the route detection of the network. The implicit node routing equalization control model of the dynamic clustering sensor network is constructed, and the associated feature quantity of the implicit node output information is extracted. Finally, the hybrid Monte Carlo algorithm is used for feature detection and information extraction, and the network implicit node information is monitored according to the characteristic regular distribution of the network implicit nodes. The simulation results show that the highest packet loss rate of the implicit node monitoring in this method is only 0.05, which is significantly lower than the ant colony algorithm(0.29)and PEAS algorithm(0.48), so it indicates that the proposed method has better monitoring effect of network implicit nodes.
参考文献/References:
[1] 郑宝林,唐惠康,谭营军.舰船通信网络中的移动脆弱节点定位与实现[J].舰船科学技术,2017,39(2A):103-105.
[2] 朱清超.多跳吞吐量分析及邻节点实时估计算法设计[J].计算机应用,2017,37(9):2484-2490.
[3] 廖福保,张文梅.改进的基于蚁群算法的非均匀分簇路由协议[J].计算机测量与控制,2017,40(4):36-38.
[4] 魏明东,何小敏,许亮.基于能量优化的无线传感器网络动态分簇目标跟踪[J].计算机应用,2017,37(6):1539-1544.
[5] 王楚捷,王好贤.M-CORD下无线接入网络资源分配研究[J].计算机工程与应用,2018,54(22):92-98.
[4] 陈浩,吴启武,李芳,等.基于分层路径计算单元与双矩阵博弈的多域光网络静态组播专用保护算法[J].计算机应用,2018,38(11):3299-3304.
[8] 刘保见,张效义,李青.基于演化博弈论的无线传感网监测节点分群算法[J].计算机应用,2016,36(8):2157-2162.
[9] 王清,龚晓峰,雒瑞森.基于圆阵虚拟阵列平移的相干信源数目估计[J].计算机工程,2018,44(9):78-82.
备注/Memo
收稿日期: 2019-01-17
基金项目: 福建省中青年教师教育科研项目(JZ180191)
作者简介: 李隘优(1980—),男,讲师,研究方向为计算机算法分析与设计.
更新日期/Last Update:
2019-05-20