HU Yanxue,HUAI Libo*,CUI Rongyi.Research on online learning behavior analysis method basedon the association rule of degree of interest[J].Journal of Yanbian University,2019,45(01):40-44.
基于兴趣度关联规则的在线学习行为分析方法
- Title:
- Research on online learning behavior analysis method based on the association rule of degree of interest
- 文章编号:
- 1004-4353(2019)01-0040-05
- 分类号:
- TP399
- 文献标志码:
- A
- 摘要:
- 针对如何使用数据挖掘技术分析指导用户改善学习行为的问题,提出了一种基于兴趣度关联规则的学习行为分析方法.首先,采用K-means聚类方法快速归纳出用户的学习状态; 其次,通过含兴趣度的关联规则算法获得学习行为与学习效果之间的强规则; 最后,以edX平台提供的用户学习数据为例对算法进行了验证.结果表明:含兴趣度指标的算法所获得的强规则数目比传统关联规则算法缩减了40.9%,同时该方法能够得出学习行为因素与学习效果之间的具体关系,有利于指导用户改善学习行为.
- Abstract:
- Aiming at the problem of how to use data mining technology to analyze and guide users to improve their learning behavior, this paper proposes a learning behavior analysis method based on association rules of degree of interest. Firstly, the K-means clustering method is adopted to quickly summarize the learning state of users. Secondly, strong rules between learning behavior and learning effect are obtained by association rule algorithm with degree of interest. Taking the user learning data provided by edX platform as an example, the verification results show that the number of strong rules obtained by the algorithm with degree of interest is reduced by 40.9% compared with the traditional association rule algorithm. At the same time, the method can obtain the specific relationship between learning behavior factors and learning effects, which is helpful to guide users to improve learning behavior.
参考文献/References:
[1] 刘凤娟.大数据的教育应用研究综述[J].现代教育技术,2014,24(8):13-19.
[2] ALGARNI A. Data mining in education[J]. International Journal of Advanced Computer Science & Applications, 2016,7(6):456-461.
[3] ANTONENKO P D, TOY S, NIEDERHAUSER D S. Using cluster analysis for data mining in educational technology research[J]. Educational Technology Research & Development, 2012,60(3):383-398.
[4] 田娜,陈明选.网络教学平台学生学习行为聚类分析[J].中国远程教育,2015,11:38-41.
[5] 付希.基于蚁群算法的聚类分析在学生成绩评价中的应用研究[D].成都:西南交通大学,2013.
[6] 董欢.决策树技术在高校学生成绩分析中的应用研究[D].西安:西安电子科技大学,2012.
[7] 刘志妩.基于决策树算法的学生成绩的预测分析[J].计算机应用与软件,2012(11):312-314.
[8] 杨财英.Apriori算法及其在学生成绩分析中的应用研究[D].湖南:湖南大学,2015.
[9] 朱茜.基于学生成绩关联分析的个性化选课推荐应用研究[D].武汉:华中师范大学,2017.
[10] ZHONG R, WANG H. Data association rules in analyzing performance level of college students[C]//International Conference on Applied Informatics & Communication. Springer, Berlin, Heidelberg, 2011,226:454-458.
[11] 严勇.数据挖掘中聚类分析算法研究与应用[D].成都:电子科技大学,2007.
[12] 崔妍,包志强.关联规则挖掘综述[J].计算机应用研究,2016,33(2):330-334.
[13] 张玉芳,熊忠阳,彭燕,等.基于兴趣度含正负项目的关联规则挖掘方法[J].电子科技大学学报,2010,39(3):407-411.
[14] 丁一,付弦.基于兴趣度的关联规则挖掘研究[J].情报科学,2011,29(6):939-942.
[15] 吴青,罗儒国,王权于.基于关联规则的网络学习行为实证研究[J].现代教育技术,2015,25(7):88-94.
备注/Memo
收稿日期: 2019-02-20
基金项目: 吉林省高等教育学会高教科研课题(JGJX2018B34,JGJX2017D12)
*通信作者: 怀丽波(1973—),女,副教授,研究方向为优化理论与方法、数据挖掘.