GAO Wenquan,LI Xin,MA Xuejiao,et al.Structure and propertieso of BeP2 under high pressure[J].Journal of Yanbian University,2019,45(01):31-35.
高压下BeP2 晶体结构与物性的理论研究
- Title:
- Structure and propertieso of BeP2 under high pressure
- 文章编号:
- 1004-4353(2019)01-0031-05
- Keywords:
- high pressure; first-principles; BeP2; semiconductors
- 分类号:
- O521.2
- 文献标志码:
- A
- 摘要:
- 将密度泛函理论第一性原理的计算方法与晶体结构预测CALYPSO软件相结合,在0~100 GPa下对BeP2的结构进行预测,研究了其在高压下的结构与物性.预测结果表明:在常压下, α -BeP2相为立方结构,其空间群为I41/amd, 该结果与实验所得结构一致.当压强为30.1 GPa时, α -BeP2相发生结构相变,由α -BeP2相转变为β -BeP2相,其结构转变为四方结构,空间群为P43212.当压强为35.4 GPa时, β -BeP2相发生结构相变,由β -BeP2相转变为γ -BeP2相,其结构转变为正交结构,空间群为Imma.在相变过程中,晶体结构体积发生坍塌,坍塌率分别为7.1%和10.9%, 属于一级相变.电子性质计算表明:在0 GPa下, α -BeP2结构的带隙为0.457 eV; 在30.1 GPa下, β -BeP2结构的带隙为0.957 eV, 为窄带隙半导体; 在35.4 GPa下, γ -BeP2结构在费米面处其导带与价带发生交叠,具有金属性.
- Abstract:
- At the pressure range from 0-100 GPa, the crystals of BeP2 are predicted by using the CALYPSO structure exploration techniue combined with based on the first-principles of density functional theory and the structure and physical properties under high pressure are systematically studied. The prediction results show that the calculated results are all in good agreement with experimental in the literature, which indicated that the predicted α -BeP2 phase has a tetragonal structure with I41/amd with space group at ambient pressure. When the pressure is 30.1 GPa, structural transformations are unraveled from α -BeP2 phase to β -BeP2 phase, the structure changes to tetragonal structure, and the space group is P43212. When the pressure is 35.4 GPa, structural transformations are unraveled from β -BeP2 phase to γ -BeP2 phase, the structure changes to orthogonal structure, and its space group is Imma. Due to the structure transition, the volume of the crystal structure collapsed and the collapse rates were 7.1% and 10.9%, respectively. So that the phase transition belonged to the first-order phase transition. The calculation of electronic properties shows that the band gap of α -BeP2 structure is 0.457 eV at 0 GPa, and the band gap of β -BeP2 phase band struture is 0.957 eV at 30.1 GPa which are all narrow band gap semiconductors. At 35.4 GPa, the γ -BeP2 structure overlaps the valence band at the Fermi surface and is metallic.
参考文献/References:
[1] ZDANOWICZ W, ZDANOWICZ L. Semiconducting compounds of the AII BV group[J]. Annual Review of Materials Research, 2003,5(1):301-328.
[2] NAYEB-HASHEMI A A, CLARK J B. The Mg-P(Magnesium-Phosphorus)system[J]. Bulletin of Alloy Phae Diagrams, 1985,6(3):244-245.
[3] VURGAFTMAN I, MEYER J R, RAM-MOHAN L R, et al. Band parameters for III-V compound semiconductors and their alloys[J]. Journal of Applied Physics, 2001,89(11):5815-5875.
[4] MOKHTARI A. Density functional study of the group II phosphide semiconductor compounds under hydrostatic pressure[J]. Journal of Physics Condensed Matter, 2008,20(13):135224.
[5] IMAI Y, WATANABE A. Electronic structures of Mg3Pn2(Pn=N,P,As,Sb and Bi)and Ca3N2 calculated by a first-principle pseudopotential method[J]. J Mater Sci, 2006,41(8):2435-2441.
[6] JIAO Z Y, MA S H, GUO Y L. Simulation of optical function for phosphide crystals following the DFT band structure calculations[J]. Computational & Theoretical Chemistry, 2011,970(1):79-84.
[7] 许德美,秦高梧.国内外铍及含铍材料的研究进展[J].中国有色金属学报,2014(5):1212-1223.
[8] STACKELBERG M V, PAULUS R. The crystal structure of nitrides and phosphides of bivalent metals[J]. Z Phys Chem Abt B, 1935,22:305.
[9] El MASLOUT A, MOTTE J P, COURTOIS A, et al. Structure cristalline de Be3P2[J]. J Solid State Chem, 1975,15(3):223-228.
[10] JEAN-FRANÇIS B, RENÉ G, ZANNE M, et al. Preparation et proprietes du diphosphure de beryllium: BeP2[J]. Materials Research Bulletin, 1975,10(11):1237-1241.
[11] L'HARIDON P, DAVID J, LANG J, et al. BeP2: A tetrahedral structure of type order-disorder which obeys a coordination rule for short-range order[J]. J Solid State Chem, 1976,19(3):287-297.
[12] CHENG C W, LIN L H. Formation of new beryllium phosphide in Au(Be)/GaP thin-film system[J]. Japanese Journal of Applied Physics, 2006,45(11):8556-8560.
[13] LI X, WANG Q. Prediction of a BeP2 monolayer with a compression-induced Dirac semimetal state[J]. Physical Review B, 2018,97(8):085418.
[14] WANG Y, LYU J, ZHU L, et al. CALYPSO: A method for crystal structure prediction[J]. Computer Physics Communications, 2012,183(10):2063-2070.
[15] MONKHORST H J. Special points for Brillouin-zone integrations[J]. Physical Review B Condensed Matter, 1976,16(4):1748-1749.
[16] PERDEW J P, BURKE K, ERNZERHOF M, et al. Generalized gradient approximation made simple[J]. Phys Rev Lett, 1996,77(18):3865-3868.
[17] BORN M, HUANG K. Dynamical theory of crystal lattices[J]. Am J Phys, 1954,39(2):113-127.
[18] JANESKO B G, HENDERSON T M, SCUSERIA G E, et al. Screened hybrid density functionals for solid-state chemistry and physics[J]. Phys Chem Chem Phys, 2009,11(3):443-454.
[19] BECHSTEDT F, FUCHS F, KRESSE G, et al. Ab-initio theory of semiconductor band structures: new developments and progress[J]. Physica Status Solidi(B), 2009,246(8):16-19.
[20] JI J, SONG X, LIU J, et al. Two -dimensional antimonene single crystals grown by van der Waals epitaxy[J]. Nat Commun, 2016,7:13352.
相似文献/References:
[1]于红艳,吴宝嘉*.GaAs在高压下的金属相变[J].延边大学学报(自然科学版),2020,46(01):40.
YU Hongyan,WU Baojia*.Metal phase transition of GaAs under high pressure[J].Journal of Yanbian University,2020,46(01):40.
[2]刘涵,张奥,刘思远,等.高压下Mg3P2晶体结构的相变与物性研究[J].延边大学学报(自然科学版),2021,47(01):36.
LIU Han,ZHANG Ao,LIU Siyuan,et al.Phase transition and properties of Mg3P2 crystal structure under high pressure[J].Journal of Yanbian University,2021,47(01):36.
备注/Memo
收稿日期: 2019-01-14
*通信作者: 刘艳辉(1971—),女,博士,教授,研究方向为材料第一性原理计算.
基金项目: 国家自然科学基金资助项目(11764043,11474125,51202084); 吉林省科技厅自然科学基金面上项目(20180101226JC)