[1]葛 琦.一类时滞分数阶差分方程边值问题解的存在性[J].延边大学学报(自然科学版),2018,44(04):283-291.
 GE Qi.Existence of solutions for a class of delay fractionaldifference equations boundary value problems[J].Journal of Yanbian University,2018,44(04):283-291.
点击复制

一类时滞分数阶差分方程边值问题解的存在性

参考文献/References:


[1] Goodrich C S. Existence and uniqueness of solutions to a fractional difference equation with nonlocal conditions[J]. J Comput Math Appl, 2011,61(2):191-202.
[2] Goodrich C S. On a fractional boundary value problem with fractional boundary conditions[J]. Appl Math Lett, 2012,25(8):1101-1105.
[3] Goodrich C S. On discrete sequential fractional boundary value problems[J]. J Math Anal Appl, 2012,385(1):111-124.
[4] 葛琦,侯成敏.一类分数阶差分方程边值问题多重正解的存在性[J].东北石油大学学报,2012,36(4):101-110.
[5] 葛琦,侯成敏.一类分数阶差分方程边值问题递增正解的存在性[J].吉林大学学报(理学版),2013,51(1):47-52.
[6] 慎闯,何延生.一类带有分数阶非局部边值条件的分数阶差分方程解的存在性[J].烟台大学学报(自然科学与工程版),2013,26(2):90-96.
[7] 慎闯,何延生,侯成敏.一类有序分数阶差分方程解的存在性[J].扬州大学学报(自然科学版),2013,16(1):12-16.
[8] HUANG Zhongmin, HOU Chengmin. Solvability of nonlocal fractional boundary value problems[J]. Discrete Dynamics in Nature and Society, 2013,2013(1):1-9.
[9] CHEN Fulai, ZHOU Yong. Existence and ulam stability of solution for discrete fractional boundary value problems[J]. Discrete Dynamics in Nature and Society, 2013,2013(1):1-7.
[10] 艾尚明,卢源秀,高鹏.一类带有成对边界条件的奇异半正分数阶差分系统的正解[J].东北石油大学学报,2014,38(4):103-118.
[11] Kang Shugui, Li Yan, Chen Huiqin. Positive solutions to boundary value problems of fractional difference equation with nonlocal conditions[J]. Advances in Difference Equations, 2014,2014(1):1-12.
[12] 葛琦,侯成敏.一类带有参数的分数阶差分方程边值问题正解的存在性和不存在性[J].东北石油大学学报,2016,40(2):112-120.
[13] 李凡凡,刘锡平,智二涛.分数阶时滞微分方程积分边值问题解的存在性[J].山东大学学报(理学版),2013,48(2):24-29.

相似文献/References:

[1]林志强.拟线性退化抛物方程组解的存在性和爆破性[J].延边大学学报(自然科学版),2020,46(02):106.
 LIN Zhiqiang.Global existence and blow-up properties for quasilineardegenerate parabolic system[J].Journal of Yanbian University,2020,46(04):106.

备注/Memo

收稿日期: 2018-11-07
作者简介: 葛琦(1975—),女,副教授,研究方向为常微分方程理论及其应用.

更新日期/Last Update: 2018-12-30