GE Qi.Existence of solutions for a class of delay fractionaldifference equations boundary value problems[J].Journal of Yanbian University,2018,44(04):283-291.
一类时滞分数阶差分方程边值问题解的存在性
- Title:
- Existence of solutions for a class of delay fractional difference equations boundary value problems
- 关键词:
- 时滞分数阶差分方程; 上下解; 单调迭代技术; Leray-Schauder度
- Keywords:
- delay fractional difference equations; upper and lower solutions; monotone iterative technique; Leray-Schauder degree
- 分类号:
- O175.6
- 文献标志码:
- A
- 摘要:
- 研究一类时滞分数阶差分方程边值问题解的存在性.首先,根据边值问题的特点,给出上下解的定义,并证明了比较定理; 然后,利用上下解方法和单调迭代技术获得了边值问题解的存在性定理和唯一性定理; 最后,利用拓扑度理论获得了该边值问题的多解性定理.
- Abstract:
- In this paper, existence of solutions for a class of delay fractional difference equations boundary value problems is studied. Firstly, according to the characteristics of the boundary value problems, the definition of upper and lower solutions are given, and the comparison theorem is proved. Secondly, by using the method of upper and lower solutions, monotone iterative technique, the existence and uniqueness theorems of solutions to boundary value problems are obtained. Finally, by using topological degree theory, multiple theorems of solutions to boundary value problems is obtained.
参考文献/References:
[1] Goodrich C S. Existence and uniqueness of solutions to a fractional difference equation with nonlocal conditions[J]. J Comput Math Appl, 2011,61(2):191-202.
[2] Goodrich C S. On a fractional boundary value problem with fractional boundary conditions[J]. Appl Math Lett, 2012,25(8):1101-1105.
[3] Goodrich C S. On discrete sequential fractional boundary value problems[J]. J Math Anal Appl, 2012,385(1):111-124.
[4] 葛琦,侯成敏.一类分数阶差分方程边值问题多重正解的存在性[J].东北石油大学学报,2012,36(4):101-110.
[5] 葛琦,侯成敏.一类分数阶差分方程边值问题递增正解的存在性[J].吉林大学学报(理学版),2013,51(1):47-52.
[6] 慎闯,何延生.一类带有分数阶非局部边值条件的分数阶差分方程解的存在性[J].烟台大学学报(自然科学与工程版),2013,26(2):90-96.
[7] 慎闯,何延生,侯成敏.一类有序分数阶差分方程解的存在性[J].扬州大学学报(自然科学版),2013,16(1):12-16.
[8] HUANG Zhongmin, HOU Chengmin. Solvability of nonlocal fractional boundary value problems[J]. Discrete Dynamics in Nature and Society, 2013,2013(1):1-9.
[9] CHEN Fulai, ZHOU Yong. Existence and ulam stability of solution for discrete fractional boundary value problems[J]. Discrete Dynamics in Nature and Society, 2013,2013(1):1-7.
[10] 艾尚明,卢源秀,高鹏.一类带有成对边界条件的奇异半正分数阶差分系统的正解[J].东北石油大学学报,2014,38(4):103-118.
[11] Kang Shugui, Li Yan, Chen Huiqin. Positive solutions to boundary value problems of fractional difference equation with nonlocal conditions[J]. Advances in Difference Equations, 2014,2014(1):1-12.
[12] 葛琦,侯成敏.一类带有参数的分数阶差分方程边值问题正解的存在性和不存在性[J].东北石油大学学报,2016,40(2):112-120.
[13] 李凡凡,刘锡平,智二涛.分数阶时滞微分方程积分边值问题解的存在性[J].山东大学学报(理学版),2013,48(2):24-29.
相似文献/References:
[1]林志强.拟线性退化抛物方程组解的存在性和爆破性[J].延边大学学报(自然科学版),2020,46(02):106.
LIN Zhiqiang.Global existence and blow-up properties for quasilineardegenerate parabolic system[J].Journal of Yanbian University,2020,46(04):106.
备注/Memo
收稿日期: 2018-11-07
作者简介: 葛琦(1975—),女,副教授,研究方向为常微分方程理论及其应用.