[1]郝惠晶,王丽丽,刘祥伟.基于融合特征网和模块网的低频行为挖掘方法[J].延边大学学报(自然科学版),2018,44(02):143-148.
 HAO Huijing,WANG Lili,LIU Xiangwei.Low frequency behavior mining method based on feature nets and module nets[J].Journal of Yanbian University,2018,44(02):143-148.
点击复制

基于融合特征网和模块网的低频行为挖掘方法

参考文献/References:


[1] Sani M F, van Zelst S J, van der Aalst W M P. Improving process discovery results by filtering outliers using conditional behavioural probabilities[C]//International Conference on Business Process Management. Cham: Springer, 2017:216-229.
[2] van Zelst S J, van Dongen B F, van der Aalst W M P, et al. Discovering relaxed sound workflow nets using integer linear programming[J]. Computing, 2018,100(5):529-556.
[3] Tax N, Sidorova N, Haakma R, et al. Mining local process models[J]. Journal of Innovation in Digital Ecosystems, 2016,3(2):183-196.
[4] Leemans S J J, Fahland D, van der Aalst W M P. Discovering Block-Structured process models from event logs containing infrequent behaviour[C]//International Conference on Business Process Management. 2014,171:66-78.
[5] Conforti R, Rosa M L, Hofstede A H M T. Filtering out infrequent behavior from business process event logs[J]. IEEE Transactions on Knowledge & Data Engineering, 2017,29(2):300-314.
[6] Liesaputra V, Yongchareon S, Chaisiri S. Efficient process model discovery using maximal pattern mining[C]//International Conference on Business Process Management. Cham: Springer, 2015:441-456.
[7] Bellodi E, Riguzzi F, Lamma E. Statistical relational learning for workflow mining[J]. Intelligent Data Analysis, 2016,20(3):515-541.
[8] Carmona J, Broucke S K. Incorporating negative information in process discovery[C]//International Conference on Business Process Management. New York, Inc: Springer-Verlag, 2015:126-143.
[9] Chapela-Campa D, Mucientes M, Lama M. Discovering infrequent behavioral patterns in process models[C]//International Conference on Business Process Management. Cham: Springer, 2017:324-340.
[10] 程腾腾,方贤文,王丽丽,等.融合特征网与模块网的业务过程挖掘[J].计算机工程与应用,2017,53(20):237-242.
[11] van der Werf J M, Kaats E. Discovery of functional architectures from event logs[C]//PNSE@ Petri Nets. 2015:227-243.
[12] 谢苗苗,刘祥伟,王丽丽.基于通信行为轮廓的手机充值流程挖掘方法[J].牡丹江师范学院学报(自然科学版),2017(4):11-15.

备注/Memo

收稿日期: 2018-03-24
作者简介: 郝惠晶(1993—),女,硕士研究生,研究方向为Petri网.
基金项目: 国家自然科学基金资助项目(61572035,61402011); 安徽省高校自然科学基金资助重点项目(KJ2016A208); 安徽理工大学研究生创新基金资助项目(2017CX2113)

更新日期/Last Update: 2018-07-20