HAO Huijing,WANG Lili,LIU Xiangwei.Low frequency behavior mining method based on feature nets and module nets[J].Journal of Yanbian University,2018,44(02):143-148.
基于融合特征网和模块网的低频行为挖掘方法
- Title:
- Low frequency behavior mining method based on feature nets and module nets
- Keywords:
- process mining; feature net; module net; low-frequency behavior
- 分类号:
- TP391.9
- 文献标志码:
- A
- 摘要:
- 针对流程挖掘过程中忽略低频行为的问题,提出一种基于融合特征网和模块网挖掘低频行为的方法.首先,通过处理有效的事件日志确定通讯行为轮廓关系,并根据日志将特征分为不同模块,重构事件内部行为,挖掘相应的模块网与特征网; 然后,融合特征网与模块网得出完整的流程模型,并通过迭代扩展初始模式得出所有低频模式.实例分析证明,本文提出的方法具有一定的可行性.
- Abstract:
- Aiming at the problem that the low frequency behavior is ignored in the process mining process, a method of mining low frequency behavior pattern based on fusion feature network and modular network is proposed in this paper. First of all, by processing effective event log to determine the communication behavior profile, dividing the characteristics into different modules according to the log, reconstructing the internal behavior of the event, thus, the corresponding module network and the feature network are excavated. Then, by integrating the feature network and the modular network, the complete process model is obtained, and iterating the initial mode, all the low frequency models is extended. Examples are given to prove the feasibility of the method.
参考文献/References:
[1] Sani M F, van Zelst S J, van der Aalst W M P. Improving process discovery results by filtering outliers using conditional behavioural probabilities[C]//International Conference on Business Process Management. Cham: Springer, 2017:216-229.
[2] van Zelst S J, van Dongen B F, van der Aalst W M P, et al. Discovering relaxed sound workflow nets using integer linear programming[J]. Computing, 2018,100(5):529-556.
[3] Tax N, Sidorova N, Haakma R, et al. Mining local process models[J]. Journal of Innovation in Digital Ecosystems, 2016,3(2):183-196.
[4] Leemans S J J, Fahland D, van der Aalst W M P. Discovering Block-Structured process models from event logs containing infrequent behaviour[C]//International Conference on Business Process Management. 2014,171:66-78.
[5] Conforti R, Rosa M L, Hofstede A H M T. Filtering out infrequent behavior from business process event logs[J]. IEEE Transactions on Knowledge & Data Engineering, 2017,29(2):300-314.
[6] Liesaputra V, Yongchareon S, Chaisiri S. Efficient process model discovery using maximal pattern mining[C]//International Conference on Business Process Management. Cham: Springer, 2015:441-456.
[7] Bellodi E, Riguzzi F, Lamma E. Statistical relational learning for workflow mining[J]. Intelligent Data Analysis, 2016,20(3):515-541.
[8] Carmona J, Broucke S K. Incorporating negative information in process discovery[C]//International Conference on Business Process Management. New York, Inc: Springer-Verlag, 2015:126-143.
[9] Chapela-Campa D, Mucientes M, Lama M. Discovering infrequent behavioral patterns in process models[C]//International Conference on Business Process Management. Cham: Springer, 2017:324-340.
[10] 程腾腾,方贤文,王丽丽,等.融合特征网与模块网的业务过程挖掘[J].计算机工程与应用,2017,53(20):237-242.
[11] van der Werf J M, Kaats E. Discovery of functional architectures from event logs[C]//PNSE@ Petri Nets. 2015:227-243.
[12] 谢苗苗,刘祥伟,王丽丽.基于通信行为轮廓的手机充值流程挖掘方法[J].牡丹江师范学院学报(自然科学版),2017(4):11-15.
备注/Memo
收稿日期: 2018-03-24
作者简介: 郝惠晶(1993—),女,硕士研究生,研究方向为Petri网.
基金项目: 国家自然科学基金资助项目(61572035,61402011); 安徽省高校自然科学基金资助重点项目(KJ2016A208); 安徽理工大学研究生创新基金资助项目(2017CX2113)