CUI Meihong,HOU Chengmin*.Oscillation of higher order FDE with deviating arguments depending on the unknown function[J].Journal of Yanbian University,2016,42(04):275-280,309.
偏差边元依赖于位置函数的FDE的振动性
- Title:
- Oscillation of higher order FDE with deviating arguments depending on the unknown function
- 分类号:
- O175
- 文献标志码:
- A
- 摘要:
- 考虑高阶泛函微分方程Lnx(t)+σNh=1qh(t)fh(x(Δh(t,x(t))))=0, 其中n≥2, σ=±1, 偏差变元Δh(1≤h≤N), 依赖于独立变量t和未知函数x. 建立了该方程振动和几乎振动的若干充分条件,本文结果改进和推广了文献[1]中的相关结果.
- Abstract:
- Higher order functional differential equations of the form Lnx(t)+σNh=1qh(t)fh(x(Δh(t,x(t))))=0 are considered, where n≥2, σ=±1 and the deviating arguments Δh, 1≤h≤N depend on the independent variable t as well as on the unknown function x. Sufficient conditions are found under which the abovementioned equations are oscillatory or almost oscillatory. Results obtained improve and extend those in the literature [1].
参考文献/References:
[1] Kitamura Y. Oscillation of functional differential equations with general deviating arguments[J]. Hiroshima Marh J, 1985,15:445-491.
[2] Agarwal R P, Grace S R, O’Regan D. Oscillation theory for second order dynamic equations[J]. Taylor and Francis, 2004,46:748-751.
[3] Erbe L H, Kong Q, Zhang B G. Oscillation theory for functional differential equations[S]. Marcel Dekker, New York, 2001,486:449-453.
[4] Gyory I, Ladas G. Oscillation theory of delay differential equations with applications[M]. Clarendon Press, Oxford, 1991.
[5] Ladas G, Lakshmi Kantham V, Zhang B G. Oscillation theory of differential equations with deviating arguments[M]. Marcel Dekker, New York, 1987.
[6] Agarwal R P, Grace S R, O’Regan D. Oscillation theory for difference and functional differential equations[M]. Springer Netherlands, 2000:657-662.
[7] Aiello W D, Freedman H I, Wu J. Analysis of a model representing stage-structured population growth with state-dependent time delay[J]. SIAM J Appl Math, 1992,52:855-869.
[8] Bainov D, Simeonov P. Positive solutions of a superlinear first order differential equations with delay depending on the unknown function[J]. J Comput Appl Math, 1998,88:95-101.
[9] Bainov D, Markova N, Simeonov P. Asymptotic behavior of non-oscillatory solutions of differential equations of second order with delay depending on the unknown function[J]. J Comput Appl Math, 1998,91:87-96.
[10] Domoshnitsky A, Drakhlin M, Litsyn E. On equations of second order with delay depending on solution[J]. Nonlinear Anal, 2002,49:689-671.
[11] Hartung F, Turi J. On the asymptotic behavior of the solutions of a state dependent delay equation[J]. Differential and Integral Equations, 1995,8:1867-1872.
[12] Li W, Zhang S. Classifications and extence of positive solutions of higher order iterative functional differential equations[J]. J Comput Appl Math, 2002,139:351-367.
[13] Lou J. Asymptotic behavior of solutions of second order quasilinear differential equations with delay depending on the unknown function[J]. J Comput Appl Math, 2006,185:133-143.
[14] Xu Zhiting. Oscillation and non-oscillation of second order differential equations with delay depending on the unknown function[J]. J Comput Appl Math, 2008,214:371-380.
[15] Wu Xingyuan, You Xiong, Shi Wei. ERKN integrators for systems of oscillatory second-order differential equations[J]. Computer Physics Communications, 2010,181:1873-1887.
备注/Memo
收稿日期: 2016-07-03 基金项目: 国家自然科学基金资助项目(11161049)
*通信作者: 侯成敏(1963—),女,教授,研究方向为微差分方程及其应用.