[1]纪西苹,刘晓艳,孟祥夫,等.mPEG-Cys-AFC偶联体的合成、胶束化行为及酶促控释研究[J].延边大学学报(自然科学版),2016,42(03):207-211,251.
 JI Xiping,LIU Xiaoyan,MENG Xiangfu,et al.Synthesis, micellezation and enzymatic controlled drug release of mPEG-Cys-AFC conjugate[J].Journal of Yanbian University,2016,42(03):207-211,251.
点击复制

mPEG-Cys-AFC偶联体的合成、胶束化行为及酶促控释研究

参考文献/References:

[1] Uhrich K E, Cannizzaro S M, Langer R S, et al. Polymeric systems for controlled drug release[J]. Chem Rev, 1999,99(11):3181-3198.
[2] Danhier F, Feron O, Preatt V. To exploit the tumor microenvironment: passive and active tumor targeting of nanocarriers for anti-cancer drug delivery[J]. J Control Release, 2010,148(2):135-146.
[3] Chasin M, Langer R, Dekker M. Biodegradable polymers as drug deliver system[J]. Drug and the Pharmaceutical Sciences, 1990,3:119-132.
[4] Rieux A D, Fievez V, Garinot M, et al. Nanoparticles as potential oral delivery systems of proteins and vaccines: a mechanistic approach[J]. J Control Release, 2006,116(1):1-27.
[5] Mainardes R M, Fonseca L M D, Khalil N M. Zidovudine-loaded PLA and PLA-PEG blend nanoparticles: influence of polymer type on phagocytic uptake by polymorphonuclear cells[J]. J Pharm Sci, 2009,98(1):257-267.
[6] Park T G, Jeong J H, Kim S W. Current status of polymeric gene delivery system[J]. Advanced Drug Delivery Reviews, 2006,58(4):467-486.
[7] Maeda H. The enhanced permeability and retention(EPR)effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting[J]. Adv Enzyme Regul, 2001,41(1):189-207.
[8] Maeda H, Wu J, Sawa T, et al. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review[J]. J Control Release, 2000, 65(1/2):271-284.
[9] Tanaka T, Shiramoto S, Miyashita M, et al. Tumor targeting based on the effect of enhanced permeability and retention(EPR)and the mechanism of receptor-mediated endocytosis(RME)[J]. Int J Pharm, 2004,277(1/2):39-61.
[10] Zhang L F, Eisenberg A. Multiple morphologies of crew-cut aggregates of polystyrene-b-poly(acrylicacid)block-copolymers[J]. Science, 1995,268(5218):1728-1731.
[11] Yu K, Eisenberg A. Bilayer morphologies of self-assembled crew-cut aggregates of amphiphilic PS-b-PEO diblock copolymers in solution[J]. Macromolecules, 1998,31(11):3509-3518.
[12] Eisenberg A, Liu F. Preparation and pH triggered inversion of vesicles from poly(acrylic Acid)-block-polystyrene-block-poly(4-vinyl Pyridine)[J]. J Am Chem Soc, 2003,125(49):15059-15064.
[13] Croy S R, Kwon G S. Polymeric micelles for drug delivery[J]. Current Pharmaceutical Design, 2006,12(36):4669-4684.
[14] Kataoka K, Harada A, Nagasaki Y. Block copolymer micelles for drug delivery: design, characterization and biological significance[J]. Advanced Drug Delivery Reviews, 2001,47(1):113-131.
[15] Achilleos M, Legge T M, Perrier S. Poly(ethylene glycol)-based amphiphilic model conetworks: synthesis by RAFT polymerization and characterization[J]. Journal of Polymer Science Part A: Polymer Chemistry, 2008,46:7556-7565.
[16] Zhu W P, Xie W H, Tong X W, et al. Amphiphilic biodegradable poly(CL-b-PEG-b-CL)triblock copolymers prared by novel rare earth complex: synthesis and crystallization properties[J]. Eur Polym J, 2007,43(8):3522-3530.
[17] Moghimi S M, Hunter A C, Murray J C. Long-circulating and target-specific nanoparticles: theory to practice[J]. Pharmacol Rev, 2001,53(2):283-318.
[18] Danhier F, Lecouturier N, Vroman B, et al. Paclitaxel-loaded PE-Gylated PLGA-based nanoparticles: in vitro and in vivo evaluation[J]. J Control Release, 2009,133(1):11-17.
[19] JIN H J, LU J, WU X. Development of a new enzyme-responsive selfimmolative spacer conjugate applicable to the controlled drug release[J]. Bioorg Med Chem, 2012,20(11):3465-3469.
[20] Brouwcr P H. The relationship between Zeta potential and ionic demand and how it affects wet-end retention[J]. Tappi Journal, 1991,48(1):170-179.
[21] 戴明华,王恩多,谢雍,等.青霉素酰化酶活性中心的定点突变[J].生物化学与生物物理学报,1999,31(5):558-562.

备注/Memo

收稿日期: 2016-06-17*通信作者: 金慧娟(1969—),女,教授,研究方向为有机合成.

更新日期/Last Update: 2016-10-20