HOU Jiwen,XU Shanzhen*.Application and research of an improved Apriori algorithm in score analysis[J].Journal of Yanbian University,2015,41(02):160-163.
改进的Apriori算法在成绩分析中的应用研究
- Title:
- Application and research of an improved Apriori algorithm in score analysis
- 关键词:
- 关联规则; 改进的Apriori算法; 成绩分析
- 分类号:
- TP391.1
- 文献标志码:
- A
- 摘要:
- 针对经典Apriori算法会产生大量冗余规则的缺点,在两方面对算法进行了改进:一方面是对产生频繁项集方式的改进,使算法只产生包含目标项的频繁项集; 另一方面是对产生规则方式的改进,使算法只产生关联后件中包含目标项的关联规则.Apriori算法改进前后的对比表明:改进后的Apriori算法可以避免非目标规则的产生,使算法更符合成绩分析的需要,提高算法的执行效率.将改进的Apriori算法应用于成绩分析中表明,改进后的算法能够挖掘出各门前导课程成绩对后续课程成绩的影响,因此可为教师制定有针对性的教学计划提供参
- Abstract:
- The classical Apriori algorithm which produces a large number of redundant rules has been improved in two aspects. On the one hand, the way to generate frequent item sets has been improved to only produce frequent item sets that contain targeted item. On the other hand, the way to generate rules has been improved to only produce the rules of associated consequent which contain targeted item. The comparison between Apriori algorithm and improved Apriori algorithm indicates that the improved Apriori algorithm can avoid the generation of nontarget rules, meet the demand of score analysis better, and improve the execution effciency. When being used in score analysis, the improved algorithm can dig out the influence to the database score from preceding courses score. As a result, it can provide a reference for teachers to develop targeted teaching plan.
参考文献/References:
[1] 广继红.数据挖掘在教务系统成绩分析中的应用研究[D].长春:吉林大学,2012:11-21.
[2] 申义彩,杨枫,王晓燕.基于关联规则的计算机等级考试答卷分析[J].信息系统工程,2011,10:127-129.
[3] 孙月昊.基于关联规则的成绩分析及课程设置研究[D].石家庄:河北科技大学,2013:18-19.
[4] Buldu A, ü?gün K. Data mining application on students’ data[J]. Procedia Social and Behavioral Sciences, 2010,2:5251-5259.
[5] Nateka S, Zwilling M. Student data mining solution-knowledge management system related to higher education institutions[J]. Expert Systems with Applications, 2014,41:6400-6407.
[6] Aher S B, Lobo L M R J. Combination of machine learning algorithms for recommendation of courses in E-Learning System based on historical data[J]. Knowledge-Based Systems, 2013,51:1-4.
[7] 王欣,徐腾飞,唐连章.SQL Server 2005数据挖掘事例分析[M].北京:中国水利水电出版社,2008:128-131.
[8] Lazcorreta E, Botella F, Caballero A F. Towards personalized recommendation by two-step modified Apriori data mining algorithm[J]. Expert Systems with Applications, 2008,15:1422-1429.
[9] 耿悦杰.关联规则算法在教育信息数据挖掘中的应用[J].计算机与现代化,2012,5:83-85.
备注/Memo
收稿日期: 2015-04-21*通信作者: 徐善针(1967—),男,副教授,研究方向为数据库应用技术、数据挖掘.