LEI Lixia,NAN Hua,ZHANG Jun*.Mutually unbiased bases in inner product space[J].Journal of Yanbian University,2015,41(01):17-20.
内积空间中的互不偏基
- Title:
- Mutually unbiased bases in inner product space
- Keywords:
- inner product space; standard orthogonal bases; mutually unbiased bases; orthogonal matrix
- 分类号:
- O151.2
- 文献标志码:
- A
- 摘要:
- 将量子信息理论中的互不偏基概念进行了代数化,在内积空间中引进和推广了互不偏基的概念,讨论了欧氏空间中的相关性质,并分别在欧氏空间和酉空间中给出互不偏基的例子.
- Abstract:
- The concept of mutually unbiased bases in quantum information theory is expressed as algebraic form in this paper, which is defined and extended in inner product space. And the related properties are discussed in Euclidean space. Moreover the examples of mutually unbiased basis are given in Euclidean space and unitary space separately.
参考文献/References:
[1] Brierley S, Weigert S. All mutually unbiased bases in dimensions two to five[J]. Quantum Info Comp, 2010,10:803-820.
[2] CHEN Bin, FEI Shaoming. Unextendible maximally entangled bases and mutually unbiased bases [J]. Phys Rev A, 2013,88(3):034301(4).
[3] Adamson R B A, Steinberg A M. Improving quantum state estimation with mutually unbiased bases[J]. Phys Rev Lett, 2010,105(3):030406(4).
[4] Fernández-Pérez A, Klimov A B, Saavedra C. Quantum process reconstruction based on mutually unbiased basis[J]. Phys Rev A, 2011,83(5):052332(6).
[5] YU I C, Lin F L, Huang C Y. Quantum secret sharing with multilevel mutually(un)biased bases[J]. Phys Rev A, 2008,78(1):012344(5).
[6] 同济大学应用数学系.高等代数与解析几何[M].北京:高等教育出版社,2005.
[7] Wies’niak M, Paterek T, Zeilinger A. Entanglement in mutually unbiased bases[J]. New J Phys, 2011,13:053047.
备注/Memo
收稿日期: 2014-10-20 *通信作者: 张军(1957—),男,教授,研究方向为代数及量子信息理论.基金项目: 国家自然科学基金资助项目(11361065); 吉林省自然科学基金资助项目(201215239)