[1]杨智博,明莹,刘洪雨*.双腔光力学系统的稳态纠缠[J].延边大学学报(自然科学版),2020,(2):129-133.
 YANG Zhibo,MING Ying,LIU Hongyu*.The steady-state entanglement in a two -cavityoptomechanical system[J].Journal of Yanbian University,2020,(2):129-133.
点击复制

双腔光力学系统的稳态纠缠

参考文献/References:

[1] MANDEL O, GREINER M, WIDERA A, et al.. Controlled collisions for multi -particle entanglement of optically trapped atoms[J].Nature, 2003,425(6961):937-940.
[2] DAISS S, WELTE S, HACKER B, et al. Single -photon distillation via a photonic parity measurement using cavity QED[J]. Physical Review Letters, 2019,122:133603.
[3] KRAUTER H, MUSCHIK C A, JENSEN K, et al. Entanglement generated by dissipation and steady state entanglement of two macroscopic object[J]. Physical Review Letters, 2011,107(8):080503.
[4] ASPELMEYER M, KIPPENBERG T J, MARQUARDT F. Cacity optomechianics[J]. Reviews of Modern Physics, 2013,86(4):1391-1452.
[5] KRUPA K, TONELLO A, COUDERC V, et al. Spatiotemporal light -beam compression from nonlinear mode coupling[J]. Physical Review A, 2018,97:043836.
[6] SCHMITZ A T, HUANG S J, PREM A, et al. Entanglement spectra of stabilizer codes: a window into gapped quantum phases of matter[J]. Physical Review B, 2019,99:205109.
[7] JOSHI C, LARSON J, JONSON M, et al. Entanglement of distant optomechanical systems[J]. Physical Review A, 2012,85(3):033805.
[8] CHEN R X, SHEN L T, YANG Z B, et al. Enhancement of entanglement in distant mechanical vibrations via modulation in a coupled optomechanical system[J]. Physical Review A, 2014,89(2):023843.
[9] LÜ X Y, WU Y, JOHANSSON J R, et al. Squeezed optomechanics with phase -matched amplification and dissipation[J]. Phys Rev Lett, 2015,114(9):093602.
[10] GARDINER C, ZOLLER P. Quantum Noise: A handbook of Markovian and Non -Markovian Quantum Stochastic Methods with Applications to Quantum Optics[M]. Berlin Heidelberg: Springer Science & Business Media, 2004.
[11] MUNDAY J N, CAPASSO F, PARSEGIAN V A. Measured long -range repulsive Casimir -Lifshitz forces[J]. Nature, 2009,457(7226):170-173.
[12] HURWITZ A. On the conditions under which an equation has only roots with negative real parts[J]. Selected Papers on Mathematical Trends in Control Theory, 1964,65:273-284.
[13] MANCINI S, GIOVANNETTI V, VITALI D, et al. Entangling macroscopic oscillators exploiting radiation pressure[J]. Physical Review Letters, 2002,88(22):120401.
[14] VIDAL G, WERNER R F. Computable measure of entanglement[J]. Physical Review A, 2002,65(3):032314.

备注/Memo

收稿日期: 2019-11-06*通信作者: 刘洪雨(1982—),男,讲师,研究方向为量子光学.
基金项目: 国家自然科学基金资助项目(11647069); 吉林省科技厅项目(20180520223JH)

更新日期/Last Update: 2020-08-18