[1]王畅,金璟璇*,金小峰.聚类与跟踪相结合的人脸数据集生成方法研究[J].延边大学学报(自然科学版),2019,(03):221-227.
 WANG Chang,JIN Jingxuan*,JIN Xiaofeng.Research on face data set generation method based oncombination of clustering and tracking[J].Journal of Yanbian University,2019,(03):221-227.
点击复制

聚类与跟踪相结合的人脸数据集生成方法研究

参考文献/References:

[1] 李蕊岗,张明.基于改进Camshift和Kalman滤波的目标跟踪算法[J].微型机与应用,2017,36(12):39-41.
[2] HENRIQUES J F, CASEIRO R, MARTINS P, et al. High-speed tracking with Kernelized Correlation Filters[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2015,37(3):583-596.
[3] NAM Hyeonseob, HAN Bohyung. Learning multi-domain convolutional neural networks for visual tracking[C]//Computer Vision and Pattern Recognition. Las Veges, USA: CVPR, 2016:4293-4302.
[4] SAHOO S K, MAKUR A. Dictionary training for sparse representation as generalization of K-means clustering[J]. IEEE Signal Processing Letters, 2013,20(6):587-590.
[5] 陈恳.人脸深度特征获取及聚类技术研究[D].杭州:浙江工业大学,2017.
[6] 王玉晗,罗邓三郎.聚类算法综述[J].科技资讯,2018,16(24):10-11.
[7] BIEMANN Chris. Chinese whispers: an efficient graph clustering algorithm and its application to natural language processing problems[C]//The First Workshop on Graph Based Methods for Natural Language Processing. Stroudsburg: Association for Computational Linguistics, 2006:73-80.
[8] 张乘龙,夏筱筠,柏松,等.基于KCF跟踪算法的目标轨迹记录系统[J].计算机系统应用,2017,26(5):113-118.
[9] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). New York: IEEE, 2016:770-778.

备注/Memo

收稿日期: 2019-04-23 *通信作者: 金璟璇(1972—),女,副教授,研究方向为计算机视觉、智能算法等.
基金项目: 吉林省教育厅“十三五”科学技术项目(JJKH20191126KJ); 延边大学世界一流学科建设培育项目(18YLPY14)

更新日期/Last Update: 2019-11-20